Ser267
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.5
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser267  -  ACSS2 (human)

Site Information
MGDstsQsPPIkRSC   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 460828

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 1 ) , mass spectrometry ( 1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 16 , 17 , 18 , 19 ) , mutation of modification site ( 1 ) , phospho-antibody ( 1 ) , western blotting ( 1 )
Disease tissue studied:
brain cancer ( 1 ) , glioblastoma ( 1 ) , glioblastoma multiforme ( 1 ) , glioma ( 1 ) , breast cancer ( 7 , 13 , 14 ) , breast ductal carcinoma ( 7 ) , breast cancer, triple negative ( 7 ) , cervical cancer ( 17 ) , cervical adenocarcinoma ( 17 ) , lung cancer ( 9 , 16 ) , non-small cell lung adenocarcinoma ( 9 , 16 ) , ovarian cancer ( 7 ) , melanoma skin cancer ( 5 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
OGT (human) ( 1 )
Putative in vivo kinases:
CDK5 (human) ( 1 )
Kinases, in vitro:
CDK5 (human) ( 1 )
Treatments:
Ac-5S-GlcNAc ( 1 ) , dinaciclib ( 1 ) , NButGT ( 1 ) , siRNA ( 1 )

Downstream Regulation
Effects of modification on ACSS2:
protein stabilization ( 1 )
Effects of modification on biological processes:
carcinogenesis, induced ( 1 ) , cell growth, induced ( 1 )

Disease / Diagnostics Relevance
Relevant diseases:
glioblastoma multiforme ( 1 )

References 

1

Ciraku L, et al. (2022) O-GlcNAc transferase regulates glioblastoma acetate metabolism via regulation of CDK5-dependent ACSS2 phosphorylation. Oncogene
35190642   Curated Info

2

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 182
32645325   Curated Info

3

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

4

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

5

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

6

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

7

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

8

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

9

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

10

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

11

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

12

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

13

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

14

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

15

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

16

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

17

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

18

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

19

Stokes M (2006) CST Curation Set: 1122; Year: 2006; Biosample/Treatment: cell line, M059K/UV; Disease: glioblastoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) ATM/ATR Substrate Antibody Cat#: 2851
Curated Info