Ser1193
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.9
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser1193  -  CLASP1 (mouse)

Site Information
IEkFSFRsQEDLNEP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 460744

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 )
Disease tissue studied:
anthrax infection ( 20 ) , leukemia ( 15 ) , acute myelogenous leukemia ( 15 ) , neuroblastoma ( 18 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 4 , 7 , 11 ) , 'brain, embryonic' ( 29 , 30 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 27 ) , 32Dcl3 (myeloid) ( 27 ) , BaF3 ('B lymphocyte, precursor') [JAK3 (human), transfection] ( 1 ) , blood ( 15 ) , brain ( 21 , 23 , 25 , 31 ) , heart ( 12 , 24 ) , Hepa 1-6 (epithelial) ( 28 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 9 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 9 ) , HL-1 (myocyte) ( 9 ) , liver ( 2 , 14 , 26 ) , liver [leptin (mouse), homozygous knockout] ( 14 ) , lung ( 21 ) , macrophage-bone marrow ( 22 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 22 ) , macrophage-peritoneum ( 13 ) , MC3T3-E1 (preosteoblast) ( 6 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 16 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 17 ) , N1E-115 (neuron) ( 18 ) , neuron:postsynaptic density-'brain, hippocampus, CA1 region' ( 5 ) , RAW 264.7 (macrophage) ( 8 ) , spleen ( 20 , 21 ) , T lymphocyte-spleen ( 19 )

Upstream Regulation
Treatments:
LPA ( 18 )

References 

1

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 32
28852199   Curated Info

2

Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261   Curated Info

3

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

4

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

5

Li J, et al. (2016) Long-term potentiation modulates synaptic phosphorylation networks and reshapes the structure of the postsynaptic interactome. Sci Signal 9, rs8
27507650   Curated Info

6

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

7

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

8

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

9

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

10

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

11

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

12

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

13

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

14

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

15

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

16

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

17

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

18

Wang Y, et al. (2011) Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 286, 18190-201
21454597   Curated Info

19

Navarro MN, et al. (2011) Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat Immunol 12, 352-61
21399638   Curated Info

20

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

21

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

22

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

23

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

24

Zhou J (2010) CST Curation Set: 9268; Year: 2010; Biosample/Treatment: tissue, heart/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y)XpS
Curated Info

25

Zhou J (2010) CST Curation Set: 9266; Year: 2010; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y)XpS
Curated Info

26

Zhou J (2010) CST Curation Set: 9269; Year: 2010; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y)XpS
Curated Info

27

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

28

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

29

Guo A (2007) CST Curation Set: 2672; Year: 2007; Biosample/Treatment: tissue, brain/-; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pY Antibodies Used to Purify Peptides prior to LCMS: Phospho-Tyrosine Mouse mAb (P-Tyr-100) Cat#: 9411, PTMScan(R) Phospho-Tyr Motif (Y*) Immunoaffinity Beads Cat#: 1991
Curated Info

30

Guo A (2007) CST Curation Set: 2677; Year: 2007; Biosample/Treatment: tissue, brain/-; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) ATM/ATR Substrate Antibody Cat#: 2851
Curated Info

31

Trinidad JC, et al. (2006) Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol Cell Proteomics 5, 914-22
16452087   Curated Info