Ser516
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser516  -  Artemis (human)

Site Information
SSTVAGGsQsPKLFS   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 460660

In vivo Characterization
Methods used to characterize site in vivo:
electrophoretic mobility shift ( 10 ) , immunoprecipitation ( 10 ) , mass spectrometry ( 1 , 2 , 6 , 7 ) , mutation of modification site ( 5 , 7 , 9 , 10 ) , phospho-antibody ( 3 , 4 , 7 , 9 ) , western blotting ( 4 , 5 , 7 , 10 )
Disease tissue studied:
ataxia-telangiectasia ( 10 ) , colorectal cancer ( 7 ) , colorectal carcinoma ( 7 ) , melanoma skin cancer ( 10 )
Relevant cell line - cell type - tissue:
293 (epithelial) ( 5 , 7 ) , EBV-LCL (lymphoblast) ( 10 ) , hair follicle ( 3 ) , HCT116 (intestinal) ( 7 ) , HEK293T (epithelial) ( 9 ) , HeLa (cervical) ( 1 , 4 ) , Jurkat (T lymphocyte) ( 6 ) , keratinocyte-skin ( 3 ) , liver ( 2 )

Upstream Regulation
Regulatory protein:
Artemis (human) ( 4 ) , ATM (human) ( 7 ) , ATR (human) ( 7 ) , DNAPK (human) ( 7 ) , NBS1 (human) ( 10 )
Putative in vivo kinases:
ATM (human) ( 10 ) , ATR (human) ( 5 ) , DNAPK (human) ( 9 )
Kinases, in vitro:
ATM (human) ( 8 ) , DNAPK (human) ( 8 , 9 )
Treatments:
aphidicolin ( 5 ) , bleomycin ( 9 ) , caffeine ( 5 , 7 ) , hydroxyurea ( 5 ) , ionizing_radiation ( 4 , 7 , 10 ) , LY294002 ( 9 ) , siRNA ( 5 , 7 ) , staurosporine ( 9 ) , UV ( 5 ) , wortmannin ( 4 , 7 )

Downstream Regulation
Effects of modification on Artemis:
intracellular localization ( 9 ) , molecular association, regulation ( 5 , 10 ) , ubiquitination ( 5 )
Effects of modification on biological processes:
cell cycle regulation ( 5 , 7 )
Induce interaction with:
FBXW7 (human) ( 5 ) , MRE11A (human) ( 10 ) , NBS1 (human) ( 10 )

References 

1

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

2

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

3

Wu XJ, et al. (2012) Expression and localization of Artemis serine 516 phosphorylation in human scalp skin. Exp Dermatol 21, 881-3
23163657   Curated Info

4

Liu H, et al. (2011) The dominant negative mutant Artemis enhances tumor cell radiosensitivity. Radiother Oncol 101, 66-72
21641068   Curated Info

5

Wang H, et al. (2009) Artemis regulates cell cycle recovery from the s phase checkpoint by promoting degradation of cyclin e. J Biol Chem 284, 18236-43
19423708   Curated Info

6

Possemato A (2007) CST Curation Set: 2798; Year: 2007; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q
Curated Info

7

Geng L, Zhang X, Zheng S, Legerski RJ (2007) Artemis links ATM to G2/M checkpoint recovery via regulation of Cdk1-cyclin B. Mol Cell Biol 27, 2625-35
17242184   Curated Info

8

Goodarzi AA, et al. (2006) DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J 25, 3880-9
16874298   Curated Info

9

Soubeyrand S, et al. (2006) Artemis phosphorylated by DNA-dependent protein kinase associates preferentially with discrete regions of chromatin. J Mol Biol 358, 1200-11
16600297   Curated Info

10

Chen L, et al. (2005) Ataxia-telangiectasia-mutated dependent phosphorylation of Artemis in response to DNA damage. Cancer Sci 96, 134-41
15723659   Curated Info