Lys40
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.8.0
Powered by Cell Signaling Technology
Home > Acetylation Site Page: > Lys40  -  TUBA1A (human)

Site Information
DGQMPsDktIGGGDD   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 460619

In vivo Characterization
Methods used to characterize site in vivo:
amino acid analysis ( 13 ) , flow cytometry ( 10 ) , immunoassay ( 16 , 17 , 21 , 23 , 24 , 25 , 29 , 30 , 33 , 34 , 35 , 37 , 38 , 39 , 44 , 51 , 65 , 66 ) , immunoprecipitation ( 2 , 5 , 6 , 7 , 9 , 10 , 11 , 29 , 42 , 44 , 50 ) , mass spectrometry ( 12 , 52 , 55 , 56 , 57 , 58 , 59 , 60 , 62 , 63 , 64 ) , mass spectrometry (in vitro) ( 13 ) , microscopy-colocalization with upstream kinase ( 13 ) , modification-specific antibody ( 1 , 3 , 4 , 5 , 7 , 9 , 12 , 14 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 28 , 29 , 30 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 40 , 41 , 42 , 45 , 47 , 48 , 49 , 51 , 54 , 65 ) , mutation of modification site ( 1 , 5 , 10 , 13 , 33 , 39 , 41 , 44 , 46 , 50 , 54 , 61 ) , phospho-antibody ( 15 , 16 , 17 , 42 , 43 ) , western blotting ( 1 , 2 , 4 , 5 , 6 , 7 , 9 , 10 , 11 , 12 , 13 , 15 , 19 , 20 , 21 , 22 , 24 , 25 , 28 , 29 , 32 , 33 , 34 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 47 , 48 , 49 , 50 , 51 , 54 , 65 , 66 )
Disease tissue studied:
bladder cancer ( 22 ) , bone cancer ( 3 , 7 , 10 , 29 , 50 ) , brain cancer ( 42 ) , medulloblastoma ( 42 ) , breast cancer ( 2 , 19 , 32 , 39 , 49 ) , cervical cancer ( 37 ) , cervical adenocarcinoma ( 37 ) , colorectal cancer ( 4 , 10 , 15 , 17 , 29 , 33 , 52 , 54 ) , colorectal carcinoma ( 4 , 10 , 15 , 17 , 29 , 33 , 52 , 54 ) , kidney cancer ( 4 ) , leukemia ( 21 ) , T cell leukemia ( 21 ) , lung cancer ( 38 , 39 , 55 , 66 ) , non-small cell lung cancer ( 38 , 39 , 66 ) , non-small cell lung adenocarcinoma ( 38 , 39 , 66 ) , lymphoma ( 19 ) , neuroblastoma ( 5 , 24 , 54 ) , ovarian cancer ( 16 , 32 ) , melanoma skin cancer ( 49 ) , fibrosarcoma of soft tissue ( 39 )
Relevant cell line - cell type - tissue:
'brain, cerebral cortex' ( 24 ) , 'neuron, cortical'-brain ( 53 ) , 'renal, podocyte' ( 9 ) , 'stem, embryonic' ( 65 ) , 16HBE (epithelial) ( 6 ) , 293 (epithelial) ( 4 , 5 , 11 , 44 , 54 ) , 3T3 (fibroblast) ( 3 , 6 , 65 , 66 ) , 786-O (renal) ( 4 ) , A2780 (ovarian) ( 32 ) , A549 (pulmonary) ( 38 , 39 , 55 , 66 ) , B16F0 (melanocyte) ( 49 ) , C2C12 (myoblast) ( 39 ) , C3H10T1/2 (fibroblast) ( 39 ) , Caco-2 (intestinal) ( 17 ) , CAD (neuron) ( 61 ) , CHO-K1 (fibroblast) ( 51 ) , COS (fibroblast) ( 61 ) , COS7 (fibroblast) ( 3 ) , Daoy ( 42 ) , E.coli (bacterial) ( 41 ) , ECV304 (endothelial) ( 21 ) , HaCaT (keratinocyte) ( 39 ) , HCT116 (intestinal) ( 10 , 15 , 29 , 33 , 52 , 62 ) , HEK293T (epithelial) ( 8 , 13 , 28 , 36 , 39 , 65 ) , HeLa (cervical) ( 7 , 10 , 20 , 25 , 29 , 30 , 34 , 35 , 37 , 46 , 48 , 50 , 51 , 61 ) , HeLa S3 (cervical) ( 37 ) , HT-29 (intestinal) ( 54 ) , hTERT-HME1 (epithelial) ( 39 ) , Jurkat (T lymphocyte) ( 21 ) , K562 (erythroid) ( 60 ) , L929 (fibroblast) ( 39 ) , LCSC (pulmonary) ( 38 ) , MCF-10A (breast cell) ( 39 ) , MCF-7 (breast cell) ( 19 ) , MDA-MB-231 (breast cell) ( 2 , 32 , 49 ) , MDCK (epithelial) ( 41 ) , MEF (fibroblast) [LRRK2 (mouse), homozygous knockout] ( 43 ) , MEF (fibroblast) ( 25 , 36 ) , MGC-803 (gastric) ( 40 ) , mononuclear-blood ( 7 ) , MRC5 (fibroblast) ( 3 ) , NCI-H1299 (pulmonary) ( 38 ) , ND7/23 ('neuron, dorsal root ganglion') ( 5 ) , Neuro-2a (neuron) ( 5 ) , neuron ( 14 , 45 , 54 ) , neuron-'brain, cerebral cortex' ( 5 ) , neuron-'brain, hippocampus' ( 5 , 24 , 61 ) , NHDF (fibroblast) ( 1 , 8 ) , NMuMG (epithelial) ( 39 ) , NSC34 (neuron) ( 44 ) , NSCLC (pulmonary) ( 38 ) , oligodendrocyte ( 51 ) , oocyte ( 12 ) , ovarian ( 16 ) , RKO (intestinal) ( 4 ) , RPE-1 (retinal) ( 21 ) , RT112 (bladder cell) ( 22 ) , sciatic nerve ( 23 ) , SH-SY5Y (neural crest) ( 24 , 54 ) , SK-N-BE(2) (neural crest) ( 54 ) , SKOV-3 (ovarian) ( 16 ) , SW480 (intestinal) ( 15 ) , SW620 (intestinal) ( 63 , 64 ) , T lymphocyte ( 47 ) , U-937 (myeloid) ( 19 ) , U2OS (bone cell) ( 3 , 7 , 10 , 29 , 50 ) , UOK-101 (renal) ( 58 , 59 )

Upstream Regulation
Regulatory protein:
AML3 (human) ( 2 ) , ATAT1 (human) ( 10 , 21 , 45 ) , ATM (human) ( 10 ) , ATR (human) ( 10 ) , BCCIP (human) ( 25 ) , BRCA1 (human) ( 10 ) , CAMSAP3 (human) ( 17 ) , Diaphanous-1 (human) ( 21 ) , GRK2 (human) ( 46 ) , INF2 (human) ( 21 ) , MAP2 (human) ( 37 ) , MKL1 (human) ( 21 ) , Moesin (human) ( 4 ) , NAA50 (human) ( 48 ) , NQO1 (human) ( 6 ) , RITA1 (human) ( 29 ) , SIRT2 (human) ( 6 ) , TMIGD1 (human) ( 4 ) , TPPP (human) ( 51 )
Treatments:
A769662 ( 34 ) , ACY-241 ( 32 ) , AGK2 ( 15 , 37 ) , AK1 ( 24 ) , butyrate ( 47 ) , CEU ( 49 ) , cisplatin ( 16 ) , colchicine ( 49 ) , CPT ( 10 ) , CPTH6 ( 38 ) , cytochalasin_D ( 21 ) , DEM ( 34 ) , differentiation ( 38 ) , doxycycline ( 51 ) , EGF ( 42 , 55 ) , eribulin ( 23 ) , FK866 ( 37 ) , fosbretabulin ( 49 ) , H2O2 ( 20 ) , hydroxyurea ( 10 ) , hypertonic_buffer ( 37 , 42 ) , injury ( 14 ) , low Na ( 42 ) , MC2494 ( 19 ) , MI2321 ( 6 ) , NaB ( 65 , 66 ) , nicotinic_acid ( 37 ) , NMN ( 6 ) , nocodazole ( 35 ) , SB431542 ( 39 ) , siRNA ( 10 , 37 , 39 , 44 ) , taxol ( 21 , 23 , 32 , 37 , 49 , 66 ) , TGF-beta ( 39 ) , TPXb ( 65 , 66 ) , trichostatin_A ( 3 , 36 , 37 , 46 , 47 , 51 , 65 , 66 ) , tubacin ( 21 , 29 , 37 ) , vinblastine ( 49 )

Downstream Regulation
Effects of modification on TUBA1A:
acetylation ( 3 , 4 , 43 ) , activity, induced ( 1 ) , intracellular localization ( 33 , 61 ) , molecular association, regulation ( 47 , 61 ) , phosphorylation ( 50 ) , protein stabilization ( 2 , 7 , 11 , 14 , 49 )
Effects of modification on biological processes:
apoptosis, inhibited ( 38 ) , autophagy, induced ( 2 , 9 , 24 , 50 ) , carcinogenesis, induced ( 33 , 38 ) , cell adhesion, inhibited ( 46 ) , cell cycle regulation ( 10 , 11 , 29 ) , cell differentiation, induced ( 51 , 54 ) , cell growth, induced ( 11 , 38 ) , cell motility, altered ( 1 , 4 , 51 ) , cell motility, induced ( 53 , 54 ) , cell motility, inhibited ( 9 , 39 , 46 , 66 ) , cytoskeletal reorganization ( 2 , 4 , 8 , 17 , 24 , 25 , 29 , 34 , 36 , 37 , 39 , 42 , 44 , 45 , 46 , 49 , 50 , 51 , 65 , 66 ) , DNA repair, induced ( 10 ) , signaling pathway regulation ( 1 , 33 ) , transcription, induced ( 33 )
Induce interaction with:
KIF5B (human) ( 61 )
Inhibit interaction with:
LRRK2 (human) ( 43 ) , NFAT1 (human) ( 47 )

Disease / Diagnostics Relevance
Relevant diseases:
Alzheimer's disease ( 24 )

References 

1

Wen D, et al. (2023) Matrix stiffness-induced α-tubulin acetylation is required for skin fibrosis formation through activation of Yes-associated protein. MedComm (2020) 4, e319
37457658   Curated Info

2

Othman A, et al. (2022) The Role of Runx2 in Microtubule Acetylation in Bone Metastatic Breast Cancer Cells. Cancers (Basel) 14
35884497   Curated Info

3

Budaitis BG, et al. (2022) A kinesin-1 variant reveals motor-induced microtubule damage in cells. Curr Biol 32, 2416-2429.e6
35504282   Curated Info

4

Rahimi N, et al. (2021) The cell adhesion molecule TMIGD1 binds to moesin and regulates tubulin acetylation and cell migration. J Biomed Sci 28, 61
34503512   Curated Info

5

Xie X, et al. (2021) α-TubK40me3 is required for neuronal polarization and migration by promoting microtubule formation. Nat Commun 12, 4113
34226540   Curated Info

6

Siegel D, et al. (2021) A redox-mediated conformational change in NQO1 controls binding to microtubules and α-tubulin acetylation. Redox Biol 39, 101840
33360352   Curated Info

7

Allouch A, et al. (2020) SUGT1 controls susceptibility to HIV-1 infection by stabilizing microtubule plus-ends. Cell Death Differ 27, 3243-3257
32514048   Curated Info

8

Procter DJ, et al. (2020) Cytoplasmic control of intranuclear polarity by human cytomegalovirus. Nature 587, 109-114
32908309   Curated Info

9

Liang T, et al. (2020) HDAC6-mediated α-tubulin deacetylation suppresses autophagy and enhances motility of podocytes in diabetic nephropathy. J Cell Mol Med 24, 11558-11572
32885602   Curated Info

10

Ryu NM, Kim JM (2020) The role of the α-tubulin acetyltransferase αTAT1 in the DNA damage response. J Cell Sci 133
32788234   Curated Info

11

Bergmann L, et al. (2020) Subcellular Localization and Mitotic Interactome Analyses Identify SIRT4 as a Centrosomally Localized and Microtubule Associated Protein. Cells 9
32846968   Curated Info

12

Hirst WG, Biswas A, Mahalingan KK, Reber S (2020) Differences in Intrinsic Tubulin Dynamic Properties Contribute to Spindle Length Control in Xenopus Species. Curr Biol 30, 2184-2190.e5
32386526   Curated Info

13

Ustinova K, et al. (2020) The disordered N-terminus of HDAC6 is a microtubule-binding domain critical for efficient tubulin deacetylation. J Biol Chem 295, 2614-2628
31953325   Curated Info

14

Vargas EJM, et al. (2020) The microtubule regulator functions downstream from the RNA repair/splicing pathway to promote axon regeneration. Genes Dev 34, 194-208
31919191   Curated Info

15

Zhao Y, et al. (2018) Nuclear E-Cadherin Acetylation Promotes Colorectal Tumorigenesis via Enhancing ¿¿-Catenin Activity. Mol Cancer Res
30401720   Curated Info

16

Belur Nagaraj A, et al. (2018) Mitotic Exit Dysfunction through the Deregulation of APC/C Characterizes Cisplatin-Resistant State in Epithelial Ovarian Cancer. Clin Cancer Res 24, 4588-4601
29653924   Curated Info

17

Pongrakhananon V, et al. (2018) CAMSAP3 maintains neuronal polarity through regulation of microtubule stability. Proc Natl Acad Sci U S A
30190432   Curated Info

18

Vanaja GR, Ramulu HG, Kalle AM (2018) Overexpressed HDAC8 in cervical cancer cells shows functional redundancy of tubulin deacetylation with HDAC6. Cell Commun Signal
29716651   Curated Info

19

Carafa V, et al. (2018) RIP1-HAT1-SIRT Complex Identification and Targeting in Treatment and Prevention of Cancer. Clin Cancer Res
29535128   Curated Info

20

Sarikhani M, et al. (2018) SIRT2 regulates oxidative stress-induced cell death through deacetylation of c-Jun NH2-terminal kinase. Cell Death Differ
29449643   Curated Info

21

Fern¿¿ndez-Barrera J, et al. (2018) The actin-MRTF-SRF transcriptional circuit controls tubulin acetylation via ¿¿-TAT1 gene expression. J Cell Biol
29321169   Curated Info

22

Ota S, Zhou ZQ, Hurlin PJ (2017) Suppression of FGFR3- and MYC-dependent oncogenesis by tubacin: association with HDAC6-dependent and independent activities. Oncotarget
29423038   Curated Info

23

Wozniak KM, et al. (2017) Peripheral Neuropathy Induced by Microtubule-Targeted Chemotherapies: Insights into Acute Injury and Long-term Recovery. Cancer Res
29191802   Curated Info

24

Silva DF, Esteves AR, Oliveira CR, Cardoso SM (2017) Mitochondrial Metabolism Power SIRT2-Dependent Deficient Traffic Causing Alzheimer's-Disease Related Pathology. Mol Neurobiol 54, 4021-4040
27311773   Curated Info

25

Huhn SC, et al. (2017) Regulation of spindle integrity and mitotic fidelity by BCCIP. Oncogene 36, 4750-4766
28394342   Curated Info

26

Hideshima T, et al. (2017) HDAC6 inhibitor WT161 downregulates growth factor receptors in breast cancer. Oncotarget 8
29113288   Curated Info

27

Head PE, et al. (2017) Sirtuin 2 mutations in human cancers impair its function in genome maintenance. J Biol Chem 292, 9919-9931
28461331   Curated Info

28

Lin S, et al. (2017) Effects of ¿¿TAT1 and HDAC5 on axonal regeneration in adult neurons. PLoS One
28505206   Curated Info

29

Steinhäuser K, et al. (2017) Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics. Oncogene 36, 2146-2159
27721410   Curated Info

30

Satake T, et al. (2017) MTCL1 plays an essential role in maintaining Purkinje neuron axon initial segment. EMBO J
28283581   Curated Info

31

Zhang S, et al. (2017) Inclusion Body Fusion of Human Parainfluenza Virus Type 3 Regulated by Acetylated ¿¿-Tubulin Enhances Viral Replication. J Virol
27881643   Curated Info

32

Huang P, et al. (2017) Selective HDAC inhibition by ACY-241 enhances the activity of paclitaxel in solid tumor models. Oncotarget
27926524   Curated Info

33

Oh S, et al. (2017) Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling. Biochem Biophys Res Commun 482, 8-14
27836544   Curated Info

34

Mahboubi H, Koromilas AE, Stochaj U (2016) AMP Kinase Activation Alters Oxidant-Induced Stress Granule Assembly by Modulating Cell Signaling and Microtubule Organization. Mol Pharmacol 90, 460-8
27430620   Curated Info

35

Ly N, et al. (2016) αTAT1 controls longitudinal spreading of acetylation marks from open microtubules extremities. Sci Rep 6, 35624
27752143   Curated Info

36

Miyake Y, et al. (2016) Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat Chem Biol 12, 748-54
27454931   Curated Info

37

Skoge RH, Ziegler M (2016) SIRT2 inactivation reveals a subset of hyperacetylated perinuclear microtubules inaccessible to HDAC6. J Cell Sci 129, 2972-82
27311481   Curated Info

38

Di Martile M, et al. (2016) Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells. Oncotarget 7, 11332-48
26870991   Curated Info

39

Gu S, et al. (2016) Loss of α-Tubulin Acetylation Is Associated with TGF-β-induced Epithelial-Mesenchymal Transition. J Biol Chem 291, 5396-405
26763233   Curated Info

40

Zheng YC, et al. (2016) 1,2,3-Triazole-Dithiocarbamate Hybrids, a Group of Novel Cell Active SIRT1 Inhibitors. Cell Physiol Biochem 38, 185-93
26784898   Curated Info

41

Yuzawa S, Kamakura S, Hayase J, Sumimoto H (2015) Structural basis of cofactor-mediated stabilization and substrate recognition of the α-tubulin acetyltransferase αTAT1. Biochem J 467, 103-13
25602620   Curated Info

42

Lee SJ, et al. (2015) EGF-induced sodium influx regulates EGFR trafficking through HDAC6 and tubulin acetylation. BMC Cell Biol 16, 24
26382850   Curated Info

43

Law BM, et al. (2014) A Direct Interaction between Leucine-rich Repeat Kinase 2 and Specific β-Tubulin Isoforms Regulates Tubulin Acetylation. J Biol Chem 289, 895-908
24275654   Curated Info

44

Gal J, et al. (2013) HDAC6 regulates mutant SOD1 aggregation through two SMIR motifs and tubulin acetylation. J Biol Chem 288, 15035-45
23580651   Curated Info

45

Topalidou I, et al. (2012) Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization. Curr Biol 22, 1057-65
22658602   Curated Info

46

Lafarga V, et al. (2012) A novel GRK2/HDAC6 interaction modulates cell spreading and motility. EMBO J 31, 856-69
22193721   Curated Info

47

Ishiguro K, et al. (2011) Cutting edge: tubulin α functions as an adaptor in NFAT-importin β interaction. J Immunol 186, 2710-3
21278340   Curated Info

48

Chu CW, et al. (2011) A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Mol Biol Cell 22, 448-56
21177827   Curated Info

49

Fortin S, et al. (2011) Characterization of the covalent binding of N-phenyl-N'-(2-chloroethyl)ureas to {beta}-tubulin: importance of Glu198 in microtubule stability. J Pharmacol Exp Ther 336, 460-7
20978170   Curated Info

50

Geeraert C, et al. (2010) Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation. J Biol Chem 285, 24184-94
20484055   Curated Info

51

Tokési N, et al. (2010) TPPP/p25 promotes tubulin acetylation by inhibiting histone deacetylase 6. J Biol Chem 285, 17896-906
20308065   Curated Info

52

Moritz A (2010) CST Curation Set: 9796; Year: 2010; Biosample/Treatment: cell line, HCT 116/untreated; Disease: colorectal carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: acK
Curated Info

53

Abdollahi MR, et al. (2009) Mutation of the Variant alpha-Tubulin TUBA8 Results in Polymicrogyria with Optic Nerve Hypoplasia. Am J Hum Genet 85, 737-44
19896110   Curated Info

54

Creppe C, et al. (2009) Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136, 551-64
19185337   Curated Info

55

Deribe YL, et al. (2009) Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci Signal 2, ra84
20029029   Curated Info

56

Rikova K (2007) CST Curation Set: 3512; Year: 2007; Biosample/Treatment: cell line, 786-0 vector/untreated; Disease: kidney cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: acK Antibodies Used to Purify Peptides prior to LCMS: Acetylated-Lysine (Ac-K2-100) Rabbit mAb Cat#: 9814, PTMScan(R) Acetyl-Lys Motif (Ac-K) Immunoaffinity Beads Cat#: 1989
Curated Info

57

Rikova K (2007) CST Curation Set: 3514; Year: 2007; Biosample/Treatment: cell line, 786-0 VHL-30/untreated; Disease: kidney cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: acK Antibodies Used to Purify Peptides prior to LCMS: Acetylated-Lysine (Ac-K2-100) Rabbit mAb Cat#: 9814, PTMScan(R) Acetyl-Lys Motif (Ac-K) Immunoaffinity Beads Cat#: 1989
Curated Info

58

Rikova K (2007) CST Curation Set: 3516; Year: 2007; Biosample/Treatment: cell line, UOK-101/untreated; Disease: kidney cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: acK Antibodies Used to Purify Peptides prior to LCMS: Acetylated-Lysine (Ac-K2-100) Rabbit mAb Cat#: 9814, PTMScan(R) Acetyl-Lys Motif (Ac-K) Immunoaffinity Beads Cat#: 1989
Curated Info

59

Rikova K (2007) CST Curation Set: 3518; Year: 2007; Biosample/Treatment: cell line, UOK-101/untreated; Disease: kidney cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: acK Antibodies Used to Purify Peptides prior to LCMS: Acetylated-Lysine (Ac-K2-100) Rabbit mAb Cat#: 9814, PTMScan(R) Acetyl-Lys Motif (Ac-K) Immunoaffinity Beads Cat#: 1989
Curated Info

60

Possemato A (2007) CST Curation Set: 2735; Year: 2007; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: acK Antibodies Used to Purify Peptides prior to LCMS: Acetylated-Lysine (Ac-K2-100) Rabbit mAb Cat#: 9814, PTMScan(R) Acetyl-Lys Motif (Ac-K) Immunoaffinity Beads Cat#: 1989
Curated Info

61

Reed NA, et al. (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16, 2166-72
17084703   Curated Info

62

Li Y (2006) CST Curation Set: 1295; Year: 2006; Biosample/Treatment: cell line, HCT116/TSA; Disease: colorectal carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: acK Antibodies Used to Purify Peptides prior to LCMS: Acetylated-Lysine Antibody Cat#: 9441
Curated Info

63

Li Y (2006) CST Curation Set: 1296; Year: 2006; Biosample/Treatment: cell line, SW620/untreated; Disease: colorectal carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: acK Antibodies Used to Purify Peptides prior to LCMS: Acetylated-Lysine Antibody Cat#: 9441
Curated Info

64

Li Y (2006) CST Curation Set: 1297; Year: 2006; Biosample/Treatment: cell line, SW620/TSA; Disease: colorectal carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: acK Antibodies Used to Purify Peptides prior to LCMS: Acetylated-Lysine Antibody Cat#: 9441
Curated Info

65

Zhang Y, et al. (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22, 1168-79
12606581   Curated Info

66

Hubbert C, et al. (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-8
12024216   Curated Info