Ser243
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.8.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser243  -  LRWD1 (human)

Site Information
DDVPLsLsPskRACA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 3214968

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 4 , 5 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 19 , 20 , 21 , 22 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 )
Disease tissue studied:
breast cancer ( 8 , 13 ) , breast ductal carcinoma ( 13 ) , HER2 positive breast cancer ( 5 ) , luminal A breast cancer ( 5 ) , luminal B breast cancer ( 5 ) , breast cancer, surrounding tissue ( 5 ) , breast cancer, triple negative ( 5 , 13 ) , cervical cancer ( 31 ) , cervical adenocarcinoma ( 31 ) , leukemia ( 24 ) , acute myelogenous leukemia ( 24 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 20 ) , acute megakaryoblastic leukemia (M7) ( 20 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 20 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 20 ) , acute myeloblastic leukemia, without maturation (M1) ( 20 ) , lung cancer ( 11 , 15 , 21 , 27 ) , non-small cell lung cancer ( 21 ) , non-small cell lung adenocarcinoma ( 11 , 15 ) , lymphoma ( 14 ) , B cell lymphoma ( 20 ) , Burkitt's lymphoma ( 14 ) , non-Hodgkin's lymphoma ( 20 ) , follicular lymphoma ( 14 ) , mantle cell lymphoma ( 14 ) , neuroblastoma ( 1 ) , ovarian cancer ( 13 ) , multiple myeloma ( 20 ) , melanoma skin cancer ( 10 )
Relevant cell line - cell type - tissue:
293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 28 ) , 293E (epithelial) ( 25 ) , A498 (renal) ( 30 ) , A549 (pulmonary) [CD38 (human), transfection, Lentiviral particles containing CD38 vector were transfected] ( 3 ) , A549 (pulmonary) ( 3 , 16 ) , AML-193 (monocyte) ( 20 ) , BJAB (B lymphocyte) ( 14 ) , breast ( 5 , 13 ) , BT-474 (breast cell) ( 8 ) , Calu 6 (pulmonary) ( 21 ) , CL1-0 (pulmonary) ( 27 ) , CL1-1 (pulmonary) ( 27 ) , CL1-2 (pulmonary) ( 27 ) , CL1-5 (pulmonary) ( 27 ) , CLB-Bar ( 1 ) , CMK (megakaryoblast) ( 20 ) , CTS (myeloid) ( 20 ) , DOHH2 ('B lymphocyte, precursor') ( 20 ) , FL-18 (B lymphocyte) ( 14 ) , FL-318 (B lymphocyte) ( 14 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 22 ) , Flp-In T-Rex-293 (epithelial) ( 22 ) , GM00130 (B lymphocyte) ( 29 ) , H2009 (pulmonary) ( 21 ) , H2077 (pulmonary) ( 21 ) , H2887 (pulmonary) ( 21 ) , H322M (pulmonary) ( 21 ) , HCC1359 (pulmonary) ( 21 ) , HCC2279 (pulmonary) ( 21 ) , HCC4006 (pulmonary) ( 21 ) , HEK293T (epithelial) ( 9 ) , HEL (erythroid) ( 20 ) , HeLa (cervical) [OGT (rat), transfection] ( 32 ) , HeLa (cervical) ( 4 , 12 , 19 , 32 , 33 , 35 , 37 , 38 , 39 , 40 ) , HeLa S3 (cervical) ( 31 ) , HUES-7 ('stem, embryonic') ( 34 ) , HUES-9 ('stem, embryonic') ( 26 ) , JEKO-1 (B lymphocyte) ( 14 ) , Jurkat (T lymphocyte) ( 17 , 36 ) , K562 (erythroid) ( 19 , 33 ) , Kasumi-1 (myeloid) ( 20 ) , KG-1 (myeloid) ( 20 , 24 ) , lung ( 15 ) , MCF-7 (breast cell) ( 7 , 8 ) , MV4-11 (macrophage) ( 20 ) , NCEB-1 (B lymphocyte) ( 14 ) , NCI-H1395 (pulmonary) ( 21 ) , NCI-H1568 (pulmonary) ( 21 ) , NCI-H157 (pulmonary) ( 21 ) , NCI-H1648 (pulmonary) ( 21 ) , NCI-H1666 (pulmonary) ( 21 ) , NCI-H2030 (pulmonary) ( 21 ) , NCI-H2172 (pulmonary) ( 21 ) , NCI-H520 (squamous) ( 21 ) , NCI-H647 (pulmonary) ( 21 ) , OCI-ly1 (B lymphocyte) ( 14 ) , OPM-2 (plasma cell) ( 20 ) , ovary ( 13 ) , P31/FUJ (erythroid) ( 20 ) , PC9 (pulmonary) ( 11 , 21 ) , Raji (B lymphocyte) ( 14 ) , RAMOS (B lymphocyte) ( 14 ) , REC-1 (B lymphocyte) ( 14 ) , RL ('B lymphocyte, precursor') ( 20 ) , RPMI-8266 (plasma cell) ( 20 ) , SU-DHL-4 (B lymphocyte) ( 14 ) , SU-DHL-6 (B lymphocyte) ( 20 ) , U266 (plasma cell) ( 20 ) , UPN-1 (B lymphocyte) ( 14 ) , Vero E6-S ('epithelial, kidney') ( 2 ) , WM239A (melanocyte) ( 10 )

Upstream Regulation
Regulatory protein:
OGT (human) ( 32 )
Treatments:
metastatic potential ( 27 ) , nocodazole ( 31 )

References 

1

Borenäs M, et al. (2024) ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition. Proc Natl Acad Sci U S A 121, e2315242121
38154064   Curated Info

2

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 182
32645325   Curated Info

3

Wang W, et al. (2018) Decreased NAD Activates STAT3 and Integrin Pathways to Drive Epithelial-Mesenchymal Transition. Mol Cell Proteomics
29980616   Curated Info

4

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

5

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

6

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

7

Sacco F, et al. (2016) Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires Signaling Networks Away from a Pro-growth State. Cell Syst 2, 159-71
27135362   Curated Info

8

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

9

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

10

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

11

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

12

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

13

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

14

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

15

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

16

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

17

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

18

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

19

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

20

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

21

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

22

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

23

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

24

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

25

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

26

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

27

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

28

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

29

Bennetzen MV, et al. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314-23
20164059   Curated Info

30

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

31

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

32

Wang Z, et al. (2010) Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal 3, ra2
20068230   Curated Info

33

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

34

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

35

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

36

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

37

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

38

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

39

Cantin GT, et al. (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7, 1346-51
18220336   Curated Info

40

Yu LR, et al. (2007) Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res 6, 4150-62
17924679   Curated Info