Ser68
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser68  -  MAF1 (human)

Site Information
PPQtsGLsPsRLsks   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 3211920

In vivo Characterization
Methods used to characterize site in vivo:
electrophoretic mobility shift ( 8 , 9 ) , mass spectrometry ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 10 ) , mutation of modification site ( 8 , 9 ) , western blotting ( 8 , 9 )
Disease tissue studied:
bone cancer ( 9 ) , osteosarcoma ( 9 ) , breast cancer ( 2 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, surrounding tissue ( 1 ) , breast cancer, triple negative ( 1 ) , neuroblastoma ( 5 )
Relevant cell line - cell type - tissue:
293 (epithelial) ( 9 ) , 293E (epithelial) ( 6 ) , breast ( 1 ) , HeLa (cervical) [MAF1 (human), transfection] ( 8 ) , HeLa (cervical) ( 7 , 10 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 2 ) , HMLER ('stem, breast cancer') ( 2 ) , IMR90hTERT (fibroblast) [MAF1 (human), transfection] ( 8 ) , Jurkat (T lymphocyte) ( 4 ) , liver ( 3 ) , MEF (fibroblast) [MAF1 (human), transfection] ( 8 ) , MG63 (bone cell) ( 9 ) , NB10 (neural crest) ( 5 ) , NPC (neural crest) ( 5 )

Upstream Regulation
Regulatory protein:
mTOR (human) ( 9 )
Putative in vivo kinases:
mTOR (human) ( 6 )
Kinases, in vitro:
mTOR (human) ( 8 )
Treatments:
MMS ( 8 ) , rapamycin ( 6 , 8 ) , serum_starvation ( 8 ) , temsirolimus ( 9 ) , Torin1 ( 6 , 8 ) , WYE132 ( 9 )

Downstream Regulation
Effects of modification on MAF1:
activity, inhibited ( 8 )
Effects of modification on biological processes:
transcription, induced ( 8 , 9 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

3

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

4

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

5

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

6

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

7

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

8

Michels AA, et al. (2010) mTORC1 directly phosphorylates and regulates human MAF1. Mol Cell Biol 30, 3749-57
20516213   Curated Info

9

Shor B, et al. (2010) Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J Biol Chem 285, 15380-92
20233713   Curated Info

10

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info