Ser480
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser480  -  53BP2 (human)

Site Information
GtLRKNQssEDILRD   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 3195845

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 14 , 15 , 16 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 )
Disease tissue studied:
breast cancer ( 6 , 7 , 15 ) , breast ductal carcinoma ( 6 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, surrounding tissue ( 1 ) , breast cancer, triple negative ( 1 , 6 ) , cervical cancer ( 25 ) , cervical adenocarcinoma ( 25 ) , leukemia ( 18 , 32 ) , acute myelogenous leukemia ( 18 ) , chronic myelogenous leukemia ( 32 ) , lung cancer ( 11 , 15 ) , non-small cell lung cancer ( 15 ) , non-small cell lung adenocarcinoma ( 11 ) , ovarian cancer ( 6 ) , pancreatic ductal adenocarcinoma ( 10 ) , melanoma skin cancer ( 4 )
Relevant cell line - cell type - tissue:
'pancreatic, ductal'-pancreas ( 10 ) , 'stem, embryonic' ( 27 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 23 ) , 293 (epithelial) [AT1 (human), transfection] ( 22 ) , 293 (epithelial) ( 28 ) , 293E (epithelial) ( 20 ) , 786-O (renal) [VHL (human), transfection] ( 3 ) , 786-O (renal) ( 3 ) , A498 (renal) ( 24 ) , breast ( 1 , 6 ) , BT-20 (breast cell) ( 15 ) , BT-549 (breast cell) ( 15 ) , Calu 6 (pulmonary) ( 15 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 16 ) , Flp-In T-Rex-293 (epithelial) ( 16 ) , H2009 (pulmonary) ( 15 ) , H2077 (pulmonary) ( 15 ) , H2887 (pulmonary) ( 15 ) , H322M (pulmonary) ( 15 ) , HCC1359 (pulmonary) ( 15 ) , HCC2279 (pulmonary) ( 15 ) , HCC366 (pulmonary) ( 15 ) , HCC4006 (pulmonary) ( 15 ) , HCC78 (pulmonary) ( 15 ) , HCC827 (pulmonary) ( 15 ) , HeLa (cervical) ( 5 , 14 , 26 , 31 ) , HeLa S3 (cervical) ( 25 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 7 ) , HMLER ('stem, breast cancer') ( 7 ) , HOP62 (pulmonary) ( 15 ) , HUES-9 ('stem, embryonic') ( 21 ) , Jurkat (T lymphocyte) ( 12 , 19 , 29 , 30 ) , K562 (erythroid) ( 14 , 26 , 32 ) , KG-1 (myeloid) ( 18 ) , LCLC-103H (pulmonary) ( 15 ) , liver ( 9 ) , lung ( 11 ) , MDA-MB-231 (breast cell) ( 15 ) , MDA-MB-468 (breast cell) ( 15 ) , NCI-H1395 (pulmonary) ( 15 ) , NCI-H1568 (pulmonary) ( 15 ) , NCI-H157 (pulmonary) ( 15 ) , NCI-H1648 (pulmonary) ( 15 ) , NCI-H1666 (pulmonary) ( 15 ) , NCI-H2030 (pulmonary) ( 15 ) , NCI-H2172 (pulmonary) ( 15 ) , NCI-H322 (pulmonary) ( 15 ) , NCI-H520 (squamous) ( 15 ) , NCI-H647 (pulmonary) ( 15 ) , ovary ( 6 ) , PC9 (pulmonary) ( 15 ) , SH-SY5Y (neural crest) ( 8 ) , WM239A (melanocyte) ( 4 )

Upstream Regulation
Treatments:
dasatinib ( 26 ) , ischemia ( 6 ) , LRRK2-IN-1 ( 8 ) , nocodazole ( 25 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

3

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

4

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

5

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

8

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

9

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

10

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

11

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

12

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

13

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

14

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

15

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

16

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

17

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

18

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

19

Guo A (2011) CST Curation Set: 12063; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pTXR
Curated Info

20

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

21

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

22

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

23

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

24

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

25

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

26

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

27

Brill LM, et al. (2009) Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5, 204-13
19664994   Curated Info

28

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

29

Possemato A (2009) CST Curation Set: 6744; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (K/R)XX[ST]
Curated Info

30

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

31

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

32

Stokes M (2008) CST Curation Set: 4391; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info