Ser127
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser127  -  DNMT1 (human)

Site Information
VGMADANsPPKPLsk   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 3189388
Available spectra:  1 CST

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 16 , 17 , 18 , 19 , 20 , 21 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 ) , mass spectrometry (in vitro) ( 4 )
Disease tissue studied:
breast cancer ( 9 , 20 ) , breast ductal carcinoma ( 9 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, surrounding tissue ( 3 ) , breast cancer, triple negative ( 3 , 9 ) , gastric cancer ( 24 ) , gastric carcinoma ( 24 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 19 ) , acute megakaryoblastic leukemia (M7) ( 19 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 19 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 19 ) , acute myeloblastic leukemia, without maturation (M1) ( 19 ) , liver cancer, surrounding tissue ( 31 ) , lung cancer ( 12 , 20 ) , non-small cell lung cancer ( 12 , 16 , 17 , 20 ) , non-small cell lung adenocarcinoma ( 12 , 17 ) , non-small cell large cell lung carcinoma ( 12 ) , lymphoma ( 10 ) , B cell lymphoma ( 19 ) , Burkitt's lymphoma ( 10 ) , non-Hodgkin's lymphoma ( 19 ) , follicular lymphoma ( 10 ) , mantle cell lymphoma ( 10 ) , multiple myeloma ( 19 ) , melanoma skin cancer ( 7 ) , T-ALL ( 1 )
Relevant cell line - cell type - tissue:
293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 30 ) , 786-O (renal) [VHL (human), transfection] ( 6 ) , 786-O (renal) ( 6 ) , A498 (renal) ( 32 ) , A549 (pulmonary) ( 13 ) , AML-193 (monocyte) ( 19 ) , BJAB (B lymphocyte) ( 10 ) , breast ( 3 , 9 ) , BT-20 (breast cell) ( 20 ) , BT-549 (breast cell) ( 20 ) , Calu 6 (pulmonary) ( 20 ) , CMK (megakaryoblast) ( 19 ) , CTS (myeloid) ( 19 ) , DOHH2 ('B lymphocyte, precursor') ( 19 ) , FL-18 (B lymphocyte) ( 10 ) , FL-318 (B lymphocyte) ( 10 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 21 ) , Flp-In T-Rex-293 (epithelial) ( 21 ) , H2009 (pulmonary) ( 20 ) , H2077 (pulmonary) ( 20 ) , H2887 (pulmonary) ( 20 ) , H322M (pulmonary) ( 20 ) , HCC2279 (pulmonary) ( 20 ) , HEL (erythroid) ( 19 ) , HeLa (cervical) ( 2 , 8 , 18 , 23 , 29 , 33 , 34 , 36 , 37 ) , HUES-9 ('stem, embryonic') ( 28 ) , JEKO-1 (B lymphocyte) ( 10 ) , Jurkat (T lymphocyte) ( 14 , 25 , 26 , 27 , 35 ) , K562 (erythroid) ( 18 , 33 ) , Kasumi-1 (myeloid) ( 19 ) , KG-1 (myeloid) ( 19 ) , liver ( 31 ) , lung ( 12 ) , MDA-MB-231 (breast cell) ( 20 ) , MDA-MB-468 (breast cell) ( 20 ) , MKN-45 (gastric) ( 24 ) , MV4-11 (macrophage) ( 19 ) , NCEB-1 (B lymphocyte) ( 10 ) , NCI-H1299 (pulmonary) ( 12 ) , NCI-H1395 (pulmonary) ( 20 ) , NCI-H157 (pulmonary) ( 20 ) , NCI-H1648 (pulmonary) ( 20 ) , NCI-H1666 (pulmonary) ( 20 ) , NCI-H1734 (pulmonary) ( 12 ) , NCI-H1944 (pulmonary) ( 12 ) , NCI-H2030 (pulmonary) ( 20 ) , NCI-H2172 (pulmonary) ( 20 ) , NCI-H2228 (pulmonary) ( 17 ) , NCI-H3122 (pulmonary) ( 16 ) , NCI-H358 (pulmonary) ( 12 ) , NCI-H460 (pulmonary) ( 12 ) , NCI-H520 (squamous) ( 20 ) , OCI-ly1 (B lymphocyte) ( 10 ) , OPM-2 (plasma cell) ( 19 ) , P31/FUJ (erythroid) ( 19 ) , PC9 (pulmonary) ( 20 ) , Raji (B lymphocyte) ( 10 ) , RAMOS (B lymphocyte) ( 10 ) , REC-1 (B lymphocyte) ( 10 ) , RL ('B lymphocyte, precursor') ( 19 ) , RPMI-8266 (plasma cell) ( 19 ) , SH-SY5Y (neural crest) ( 11 ) , SU-DHL-4 (B lymphocyte) ( 10 ) , SU-DHL-6 (B lymphocyte) ( 19 ) , T-ALL (T lymphocyte) ( 1 ) , U266 (plasma cell) ( 19 ) , UPN-1 (B lymphocyte) ( 10 ) , WM239A (melanocyte) ( 7 )

Upstream Regulation
Kinases, in vitro:
CDK4 (human) ( 4 )
Treatments:
EGF ( 2 ) , ischemia ( 9 )

References 

1

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia
28852199   Curated Info

2

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Acevedo M, et al. (2016) A CDK4/6-Dependent Epigenetic Mechanism Protects Cancer Cells from PML-induced Senescence. Cancer Res 76, 3252-64
27206849   Curated Info

5

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

6

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

7

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

8

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

9

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

10

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

11

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

12

Rikova K, Hall B (2013) CST Curation Set: 20737, 21164, 30161, 30162, 30163; Year: 2013; Biosample/Treatment: cell line, H1299, H1944, H358, H1734, H460; Disease: -; TMT: Y; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pY, p[ST], RXXp[ST], pSQ, p[ST]QG, LXRXXp[ST], p[ST]P
Curated Info

13

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

14

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

15

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

16

Rikova K (2013) CST Curation Set: 18860; Year: 2012; Biosample/Treatment: cell line, H3122/crizotinib, geldanamycin; Disease: -; TMT: Y; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pT
Curated Info

17

Rikova K (2013) CST Curation Set: 18859; Year: 2013; Biosample/Treatment: cell line, H2228/crizotinib, geldanamycin; Disease: -; TMT: Y; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pT
Curated Info

18

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

19

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

20

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

21

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

22

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

23

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

24

Mulhern D (2011) CST Curation Set: 12863; Year: 2011; Biosample/Treatment: cell line, MKN-45/untreated; Disease: gastric carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P Antibodies Used to Purify Peptides prior to LCMS: T*PP Motif (T*PP) (D61C3) Rabbit mAb Cat#: 5757, PTMScan(R) T*PP Motif (T*PP) Immunoaffinity Beads Cat#: 5758
Curated Info

25

Guo A (2011) CST Curation Set: 12058; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pTXR
Curated Info

26

Guo A (2011) CST Curation Set: 12061; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pTXR
Curated Info

27

Guo A (2011) CST Curation Set: 12062; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pTXR
Curated Info

28

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

29

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

30

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

31

Tucker M (2010) CST Curation Set: 9851; Year: 2010; Biosample/Treatment: tissue, liver/untreated; Disease: liver cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

32

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

33

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

34

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

35

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

36

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

37

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info