Ser160
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.0.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser160  -  VAPB (human)

Site Information
VsksLsssLDDtEVK   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 3178425

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 )
Disease tissue studied:
breast cancer ( 3 , 6 , 13 ) , breast ductal carcinoma ( 6 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, surrounding tissue ( 1 ) , breast cancer, triple negative ( 1 , 6 ) , cervical cancer ( 23 ) , cervical adenocarcinoma ( 23 ) , leukemia ( 16 ) , acute myelogenous leukemia ( 16 ) , hepatocellular carcinoma, surrounding tissue ( 22 ) , lung cancer ( 4 , 9 , 13 ) , non-small cell lung cancer ( 13 ) , non-small cell lung adenocarcinoma ( 4 , 9 ) , ovarian cancer ( 6 ) , pancreatic ductal adenocarcinoma ( 8 )
Relevant cell line - cell type - tissue:
'pancreatic, ductal'-pancreas ( 8 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 20 ) , 293 (epithelial) [AT1 (human), transfection] ( 18 ) , 293 (epithelial) ( 25 ) , 293GP (epithelial) [NPM-ALK (human), transfection] ( 19 ) , breast ( 1 , 6 ) , BT-20 (breast cell) ( 13 ) , BT-474 (breast cell) ( 3 ) , BT-549 (breast cell) ( 13 ) , Calu 6 (pulmonary) ( 13 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 14 ) , Flp-In T-Rex-293 (epithelial) ( 14 ) , GM00130 (B lymphocyte) ( 21 ) , H2009 (pulmonary) ( 13 ) , H2077 (pulmonary) ( 13 ) , H2887 (pulmonary) ( 13 ) , H322M (pulmonary) ( 13 ) , HCC1359 (pulmonary) ( 13 ) , HCC1937 (breast cell) ( 13 ) , HCC2279 (pulmonary) ( 13 ) , HCC366 (pulmonary) ( 13 ) , HCC4006 (pulmonary) ( 13 ) , HCC78 (pulmonary) ( 13 ) , HCC827 (pulmonary) ( 13 ) , HeLa (cervical) ( 5 , 12 , 24 , 26 ) , HeLa S3 (cervical) ( 17 , 23 ) , hepatocyte-liver ( 22 ) , HOP62 (pulmonary) ( 13 ) , Jurkat (T lymphocyte) ( 10 ) , K562 (erythroid) ( 12 ) , KG-1 (myeloid) ( 16 ) , LCLC-103H (pulmonary) ( 13 ) , liver ( 7 ) , LOU-NH91 (squamous) ( 13 ) , lung ( 9 ) , MCF-7 (breast cell) ( 3 , 13 ) , MDA-MB-231 (breast cell) ( 13 ) , MDA-MB-468 (breast cell) ( 13 ) , NCI-H1395 (pulmonary) ( 13 ) , NCI-H1568 (pulmonary) ( 13 ) , NCI-H1648 (pulmonary) ( 13 ) , NCI-H2030 (pulmonary) ( 13 ) , NCI-H2172 (pulmonary) ( 13 ) , NCI-H322 (pulmonary) ( 13 ) , NCI-H460 (pulmonary) ( 13 ) , NCI-H520 (squamous) ( 13 ) , NCI-H647 (pulmonary) ( 13 ) , ovary ( 6 ) , PC9 (pulmonary) ( 4 , 13 )

Upstream Regulation
Treatments:
ischemia ( 6 ) , nocodazole ( 23 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

3

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

4

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

5

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

8

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

9

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

10

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

11

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

12

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

13

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

14

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

15

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

16

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

17

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

18

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

19

Wu F, et al. (2010) Studies of phosphoproteomic changes induced by nucleophosmin-anaplastic lymphoma kinase (ALK) highlight deregulation of tumor necrosis factor (TNF)/Fas/TNF-related apoptosis-induced ligand signaling pathway in ALK-positive anaplastic large cell lymphoma. Mol Cell Proteomics 9, 1616-32
20393185   Curated Info

20

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

21

Bennetzen MV, et al. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314-23
20164059   Curated Info

22

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

23

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

24

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

25

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

26

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info