Ser55
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.9
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser55  -  HEC1 (human)

Site Information
PtsERkVsLFGkRts   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 459763

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 1 , 3 , 4 , 12 ) , immunoprecipitation ( 1 , 2 , 6 ) , mass spectrometry ( 1 , 2 , 6 , 11 , 13 , 15 , 16 , 17 , 18 , 19 , 21 ) , microscopy-colocalization with upstream kinase ( 12 ) , mutation of modification site ( 1 , 2 , 4 ) , phospho-antibody ( 1 , 3 , 4 , 6 , 7 , 8 , 9 , 10 , 12 ) , western blotting ( 1 , 4 , 8 )
Disease tissue studied:
bone cancer ( 4 ) , breast cancer ( 4 , 11 , 16 ) , breast ductal carcinoma ( 11 ) , breast cancer, triple negative ( 11 ) , cervical cancer ( 6 , 7 ) , cervical adenocarcinoma ( 6 , 7 ) , colorectal cancer ( 4 ) , colorectal carcinoma ( 4 ) , lung cancer ( 4 , 16 ) , non-small cell lung cancer ( 4 , 16 ) , non-small cell lung adenocarcinoma ( 4 ) , prostate cancer ( 4 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
BOD1 (human) ( 7 ) , INCENP (human) ( 4 ) , KIF18A (human) ( 4 ) , PPP6C (human) ( 1 ) , TPX2 (human) ( 1 , 4 ) , TPX2 (mouse) ( 4 )
Putative in vivo kinases:
AurA (human) ( 1 , 4 , 8 ) , AurB (human) ( 9 )
Kinases, in vitro:
AurA (human) ( 6 , 8 ) , AurB (human) ( 6 , 20 )
Treatments:
AZD1152 ( 1 , 4 ) , BI2536 ( 18 ) , BTB-1 ( 4 ) , calyculin_A ( 1 , 4 ) , hyper-intrakinetochore_stretch ( 10 ) , IAA ( 4 ) , MKLP2i3 ( 3 ) , MLN8054 ( 6 , 18 ) , MLN8237 ( 1 , 4 ) , nocodazole ( 1 , 2 ) , siRNA ( 1 ) , STLC ( 2 ) , TAME ( 2 ) , taxol ( 4 ) , UMK57 ( 4 ) , ZK-Thiazolidinone ( 17 ) , ZM447439 ( 1 , 6 )

Downstream Regulation
Effects of modification on biological processes:
cell cycle regulation ( 1 , 3 , 20 ) , chromatin organization, altered ( 3 , 4 ) , cytoskeletal reorganization ( 2 )

References 

1

Sobajima T, et al. (2023) PP6 regulation of Aurora A-TPX2 limits NDC80 phosphorylation and mitotic spindle size. J Cell Biol 222
36897279   Curated Info

2

Kucharski TJ, et al. (2022) Small changes in phospho-occupancy at the kinetochore-microtubule interface drive mitotic fidelity. J Cell Biol 221
35878017   Curated Info

3

Schrock MS, et al. (2022) MKLP2 functions in early mitosis to ensure proper chromosome congression. J Cell Sci 135
35638575   Curated Info

4

Iemura K, et al. (2021) Chromosome oscillation promotes Aurora A-dependent Hec1 phosphorylation and mitotic fidelity. J Cell Biol 220
33988677   Curated Info

5

Zhao G, et al. (2018) Dynamic acetylation of the kinetochore-associated protein HEC1 ensures accurate microtubule-kinetochore attachment. J Biol Chem
30409912   Curated Info

6

DeLuca KF, et al. (2018) Aurora A kinase phosphorylates Hec1 to regulate metaphase kinetochore-microtubule dynamics. J Cell Biol 217, 163-177
29187526   Curated Info

7

Schleicher K, et al. (2017) The Ndc80 complex targets Bod1 to human mitotic kinetochores. Open Biol 7
29142109   Curated Info

8

Ye AA, et al. (2015) Aurora A Kinase Contributes to a Pole-Based Error Correction Pathway. Curr Biol 25, 1842-51
26166783   Curated Info

9

Li S, et al. (2015) Spatial Compartmentalization Specializes the Function of Aurora A and Aurora B. J Biol Chem 290, 17546-58
25987563   Curated Info

10

Suzuki A, et al. (2014) The Architecture of CCAN Proteins Creates a Structural Integrity to Resist Spindle Forces and Achieve Proper Intrakinetochore Stretch. Dev Cell 30, 717-30
25268173   Curated Info

11

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

12

Caldas GV, DeLuca KF, DeLuca JG (2013) KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting Aurora B kinase activity. J Cell Biol 203, 957-69
24344188   Curated Info

13

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

14

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

15

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

16

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

17

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

18

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

19

Malik R, et al. (2009) Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res 8, 4553-63
19691289   Curated Info

20

DeLuca JG, et al. (2006) Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969-82
17129782   Curated Info

21

Nousiainen M, et al. (2006) Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A 103, 5391-6
16565220   Curated Info