|
Powered by Cell Signaling Technology |
Site Information |
---|
tPtkAPysPttskEK SwissProt Entrez-Gene |
Blast this site against: NCBI SwissProt PDB |
Site Group ID: 3149749 |
In vivo Characterization | |
---|---|
Methods used to characterize site in vivo: | |
Disease tissue studied: | |
Relevant cell line - cell type - tissue: |
Upstream Regulation | |
---|---|
Putative in vivo kinases: | |
Kinases, in vitro: | |
Treatments: |
Downstream Regulation | |
---|---|
Effects of modification on VCIP135: | |
Effects of modification on biological processes: | |
Inhibit interaction with: |
References | |
---|---|
Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782 Curated Info |
|
Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275 Curated Info |
|
Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151 Curated Info |
|
Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451 Curated Info |
|
Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569 Curated Info |
|
Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959 Curated Info |
|
Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302 Curated Info |
|
Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004 Curated Info |
|
Totsukawa G, et al. (2013) Mitotic phosphorylation of VCIP135 blocks p97ATPase-mediated Golgi membrane fusion. Biochem Biophys Res Commun 433, 237-42
23500464 Curated Info |
|
Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163 Curated Info |
|
Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753 Curated Info |
|
Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903 Curated Info |
|
Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546 Curated Info |
|
Gu TL, et al. (2011) Survey of activated FLT3 signaling in leukemia. PLoS One 6, e19169
21552520 Curated Info |
|
Gu T (2009) CST Curation Set: 7661; Year: 2009; Biosample/Treatment: tissue, bone marrow/untreated; Disease: acute myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpTPAntibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK Substrates (PXTP) (46G11) Rabbit mAb Cat#: 4391, PTMScan(R) Phospho-MAPK Substrate Motif (PXpTP) Immunoaffinity Beads Cat#: 1983
Curated Info |
|
Gu T (2009) CST Curation Set: 7662; Year: 2009; Biosample/Treatment: tissue, bone marrow/untreated; Disease: acute myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpTPAntibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK Substrates (PXTP) (46G11) Rabbit mAb Cat#: 4391, PTMScan(R) Phospho-MAPK Substrate Motif (PXpTP) Immunoaffinity Beads Cat#: 1983
Curated Info |