Ser345
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus®
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser345  -  ADRB2 (human)

Site Information
ELLCLRRssLKAyGN   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447910

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 9 ) , mass spectrometry ( 3 ) , mutation of modification site ( 1 , 4 , 8 , 9 ) , phospho-antibody ( 2 , 3 , 4 , 7 ) , western blotting ( 2 , 3 , 7 )
Relevant cell line - cell type - tissue:
293 (epithelial) ( 1 , 2 , 4 , 7 , 8 ) , CHW (fibroblast) ( 9 ) , HeLa (cervical) ( 3 ) , L cells (fibroblast) ( 9 )

Upstream Regulation
Kinases, in vitro:
PKACA (human) ( 4 )
Treatments:
alpha-hederin ( 2 ) , carazolol ( 3 ) , colforsin ( 3 ) , ICI-118,551 ( 3 ) , isoproterenol ( 2 , 3 , 4 , 7 , 9 ) , KT5720 ( 4 ) , Rp-cAMPS ( 4 )

Downstream Regulation
Effects of modification on ADRB2:
intracellular localization ( 1 ) , receptor desensitization, altered ( 9 ) , receptor recycling, inhibited ( 4 )
Effects of modification on biological processes:
cytoskeletal reorganization ( 4 )

References 

1

Bowman SL, Shiwarski DJ, Puthenveedu MA (2016) Distinct G protein-coupled receptor recycling pathways allow spatial control of downstream G protein signaling. J Cell Biol 214, 797-806
27646272   Curated Info

2

Schulte-Michels J, et al. (2016) α-Hederin inhibits G protein-coupled receptor kinase 2-mediated phosphorylation of β2-adrenergic receptors. Phytomedicine 23, 52-7
26902407   Curated Info

3

Gao S, Malbon C, Wang HY (2014) Probing the stoichiometry of β2-adrenergic receptor phosphorylation by targeted mass spectrometry. J Mol Signal 9, 3
24690384   Curated Info

4

Vistein R, Puthenveedu MA (2013) Reprogramming of G protein-coupled receptor recycling and signaling by a kinase switch. Proc Natl Acad Sci U S A 110, 15289-94
24003153   Curated Info

5

Gimenez LE, et al. (2012) Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors. J Biol Chem 287, 9028-40
22275358   Curated Info

6

Nobles KN, et al. (2011) Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci Signal 4, ra51
21868357   Curated Info

7

Shenoy SK, et al. (2006) beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281, 1261-73
16280323   Curated Info

8

Friedman J, Babu B, Clark RB (2002) Beta(2)-adrenergic receptor lacking the cyclic AMP-dependent protein kinase consensus sites fully activates extracellular signal-regulated kinase 1/2 in human embryonic kidney 293 cells: lack of evidence for G(s)/G(i) switching. Mol Pharmacol 62, 1094-102
12391272   Curated Info

9

Moffett S, Rousseau G, Lagacé M, Bouvier M (2001) The palmitoylation state of the beta(2)-adrenergic receptor regulates the synergistic action of cyclic AMP-dependent protein kinase and beta-adrenergic receptor kinase involved in its phosphorylation and desensitization. J Neurochem 76, 269-79
11146000   Curated Info

10

Hebert TE, et al. (1998) Functional rescue of a constitutively desensitized beta2AR through receptor dimerization. Biochem J 330 ( Pt 1), 287-93
9461522   Curated Info