Ser1177
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser1177  -  eNOS (human)

Site Information
TSRIRtQsFsLQERQ   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447884

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 73 ) , immunoprecipitation ( 2 , 3 , 4 , 73 ) , mass spectrometry ( 4 , 5 , 9 , 10 , 11 , 13 , 19 , 34 ) , mutation of modification site ( 3 , 4 , 28 , 35 , 47 , 59 , 63 , 65 , 66 , 67 , 70 , 73 ) , phospho-antibody ( 2 , 3 , 4 , 6 , 7 , 11 , 14 , 16 , 17 , 18 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 71 , 74 ) , phosphoamino acid analysis ( 73 ) , western blotting ( 2 , 3 , 4 , 6 , 7 , 11 , 14 , 16 , 17 , 18 , 20 , 21 , 22 , 23 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 44 , 46 , 47 , 48 , 50 , 51 , 54 , 55 , 57 , 58 , 59 , 60 , 63 , 64 , 66 , 71 , 73 , 74 )
Disease tissue studied:
bone cancer ( 18 ) , breast cancer ( 18 ) , breast adenocarcinoma ( 18 ) , HER2 positive breast cancer ( 5 ) , luminal A breast cancer ( 5 ) , luminal B breast cancer ( 5 ) , breast cancer, triple negative ( 5 ) , hepatocellular carcinoma, surrounding tissue ( 19 ) , lung cancer ( 10 ) , non-small cell lung adenocarcinoma ( 10 ) , pancreatic ductal adenocarcinoma ( 9 )
Relevant cell line - cell type - tissue:
'pancreatic, ductal'-pancreas ( 9 ) , 293 (epithelial) ( 21 ) , 3T3 (fibroblast) [SHP-2 (mouse), homozygous knockout] ( 67 ) , aorta ( 23 ) , artery-heart ( 39 ) , BAEC (endothelial) ( 24 , 28 , 30 , 47 , 55 , 65 ) , BPAEC ( 3 ) , breast ( 5 ) , CHO (fibroblast) [MAS1 (human)] ( 32 ) , COS (fibroblast) ( 28 , 47 , 52 , 59 , 66 , 68 , 73 ) , EA.hy 926 (endothelial) ( 71 ) , ECV304 (endothelial) ( 14 ) , endothelial-aorta ( 59 ) , endothelial-umbilical vein ( 20 ) , endothelial-vein ( 49 , 70 ) , H9c2 (myoblast) ( 2 ) , HAEC (endothelial) ( 25 , 29 , 30 , 32 , 36 , 42 , 56 , 57 , 74 ) , heart ( 2 , 18 ) , HeLa (cervical) ( 25 , 58 ) , hepatocyte-liver ( 19 ) , HMVEC (endothelial) ( 45 ) , HUVEC (endothelial) ( 4 , 7 , 11 , 16 , 17 , 21 , 22 , 23 , 27 , 31 , 33 , 34 , 36 , 37 , 38 , 40 , 43 , 45 , 47 , 50 , 51 , 53 , 54 , 60 , 61 , 63 , 64 , 66 , 67 , 68 , 69 , 71 , 73 ) , HUVEC (endothelial) [IRS1 (human)] ( 54 ) , HUVEC (endothelial) [VEGFR1 (human)] ( 35 ) , HUVEC (endothelial) [VEGFR2 (human)] ( 35 ) , K562 (erythroid) ( 13 ) , lung ( 10 , 18 ) , MDA-MB-361 (breast cell) ( 18 ) , myocyte-heart ( 41 , 48 ) , PAE (endothelial) ( 46 , 68 ) , platelet-blood ( 26 ) , preadipocyte ( 6 ) , RFPEC (endothelial) ( 51 ) , stromal ( 44 ) , SV40 ( 45 ) , U2OS (bone cell) ( 18 )

Upstream Regulation
Regulatory protein:
Akt1 (human) ( 22 ) , AMPKA1 (human) ( 33 ) , AMPKA2 (human) ( 46 ) , APPL (mouse) ( 27 ) , Cortactin (human) ( 4 ) , eNOS (mouse) ( 22 ) , ER-alpha (human) ( 47 ) , ERK1 (human) ( 31 ) , ERK2 (human) ( 31 ) , FSTL1 (mouse) ( 22 ) , GHSR (human) ( 30 ) , IRS1 (human) ( 54 ) , JNK1 (human) ( 31 ) , JNK2 (human) ( 31 ) , LKB1 (human) ( 16 ) , PIK3R1 (human) ( 35 , 59 ) , PKCA (human) ( 51 ) , PTEN (human) ( 35 , 74 ) , PTPRJ (human) ( 21 ) , RHOA (human) ( 61 ) , ROCK1 (human) ( 61 ) , VEGFR1 (human) ( 35 ) , VEGFR2 (human) ( 35 )
Putative in vivo kinases:
Akt1 (human) ( 59 , 61 , 73 ) , AMPKA1 (human) ( 17 , 29 , 56 )
Kinases, in vitro:
Akt1 (human) ( 24 , 62 , 73 ) , PKACA (human) ( 62 , 72 ) , PKG2 (human) ( 72 )
Treatments:
8-Rp-cAMP ( 34 , 39 ) , A-443654 ( 34 ) , A-779 ( 32 ) , A23187 ( 23 , 24 , 50 ) , AACOCF3 ( 48 ) , acadesine ( 33 , 50 , 56 ) , adiponectin ( 27 , 55 ) , aldosterone ( 38 ) , AM580 ( 45 ) , angiotensin ( 53 ) , angiotensin-(1-7) ( 32 ) , atorvastatin ( 33 , 64 ) , ATP ( 58 ) , BADGE ( 40 ) , BAPTA-AM ( 50 , 64 , 66 ) , BAR501 ( 8 ) , black_tea_polyphenols ( 47 ) , bradykinin ( 23 , 37 , 68 ) , BRL37344 ( 41 ) , calyculin_A ( 39 , 64 , 68 ) , cAMP_analog ( 42 ) , CCCP ( 50 ) , ceramide ( 58 ) , ciclosporin ( 68 ) , colforsin ( 39 , 50 ) , compound_C ( 17 , 23 , 33 , 46 ) , CSD_peptide ( 64 ) , D609 ( 58 ) , DEA-NONOate ( 23 ) , development ( 26 ) , EGF ( 50 , 58 ) , endostatin ( 63 ) , eplerenone ( 38 ) , equol ( 36 ) , estradiol ( 46 , 71 ) , fumonisin_B1 ( 58 ) , geldanamycin ( 64 , 66 ) , genistein ( 49 , 59 ) , ghrelin ( 30 ) , glucose ( 57 , 60 ) , GW_9662 ( 25 ) , H-89 ( 34 , 37 , 50 ) , H2O2 ( 2 , 20 ) , HDL ( 59 ) , high_glucose ( 7 ) , histamine ( 50 , 68 ) , hydroxyurea ( 37 ) , hyperglycemia ( 65 ) , iberiotoxin ( 40 ) , IBMX ( 50 ) , IL-6 ( 31 ) , imipramine ( 58 ) , insulin ( 7 , 31 , 53 , 54 , 55 , 56 , 57 ) , ischemia/reperfusion ( 2 ) , JNK_inhibitor_I ( 31 ) , KN-93 ( 50 , 68 ) , L-mevalonate ( 64 ) , L-NAME ( 23 , 25 , 60 ) , LE540 ( 45 ) , losartan ( 53 ) , LPS ( 3 ) , LY294002 ( 22 , 34 , 35 , 36 , 37 , 39 , 42 , 58 , 59 , 64 , 66 ) , manumycin_A ( 58 ) , metformin ( 16 ) , nicotinamide ( 17 ) , okadaic_acid ( 38 , 39 , 64 , 68 ) , Ox-PAPC ( 42 ) , PAF ( 14 ) , PAR1-activating_peptide ( 43 ) , PD98059 ( 31 , 53 , 59 ) , PDMP ( 58 ) , PF-431396 ( 2 ) , phorbol_ester ( 24 ) , pioglitazone ( 25 ) , PKI-402 ( 18 ) , PP2 ( 42 , 59 ) , PTIO ( 23 ) , PTX ( 34 ) , pulsatile shear stress ( 4 ) , retinoic_acid ( 45 ) , Ro31-8220 ( 69 ) , rosiglitazone ( 25 , 40 ) , rosuvastatin ( 11 ) , Rp-cAMPS ( 50 ) , salbutamol ( 34 ) , scyphostatin ( 58 ) , SH-5 ( 34 ) , siRNA ( 21 , 27 , 31 , 47 , 51 ) , SNAP ( 23 ) , SNP ( 23 ) , spermine ( 23 ) , thrombin ( 36 , 43 , 50 , 61 ) , TNF ( 25 , 58 ) , troglitazone ( 25 ) , U0126 ( 36 ) , U73122 ( 35 , 50 ) , VEGF ( 24 , 28 , 29 , 35 , 38 , 51 , 59 , 63 , 66 , 69 , 71 ) , wortmannin ( 32 , 35 , 37 , 45 , 50 , 55 , 58 , 60 , 65 , 68 ) , Y27632 ( 50 ) , zinterol ( 48 )

Downstream Regulation
Effects of modification on eNOS:
enzymatic activity, induced ( 14 , 22 , 24 , 45 , 48 , 49 , 52 , 56 , 59 , 61 , 66 , 67 , 73 ) , intracellular localization ( 44 , 48 )
Effects of modification on biological processes:
cell differentiation, altered ( 22 ) , cell differentiation, induced ( 6 ) , cell motility, altered ( 22 , 63 ) , cytoskeletal reorganization ( 70 ) , signaling pathway regulation ( 11 )

References 

1

Siragusa M, et al. (2020) VE-PTP inhibition elicits eNOS phosphorylation to blunt endothelial dysfunction and hypertension in diabetes. Cardiovasc Res
32653904   Curated Info

2

Bibli SI, et al. (2017) Tyrosine phosphorylation of eNOS regulates myocardial survival after an ischaemic insult: role of PYK2. Cardiovasc Res 113, 926-937
28444132   Curated Info

3

Kumar S, et al. (2017) Hyper-activation of pp60(Src) limits nitric oxide signaling by increasing asymmetric dimethylarginine levels during acute lung injury. Free Radic Biol Med 102, 217-228
27838434   Curated Info

4

Shentu TP, et al. (2016) AMP-Activated Protein Kinase and Sirtuin 1 Coregulation of Cortactin Contributes to Endothelial Function. Arterioscler Thromb Vasc Biol 36, 2358-2368
27758765   Curated Info

5

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

6

Johlfs MG, et al. (2015) Capillary Isoelectric Focusing Immunoassay for Fat Cell Differentiation Proteomics. PLoS One 10, e0132105
26132171   Curated Info

7

De Nigris V, et al. (2015) Short-term high glucose exposure impairs insulin signaling in endothelial cells. Cardiovasc Diabetol 14, 114
26297582   Curated Info

8

Renga B, et al. (2015) Reversal of Endothelial Dysfunction by GPBAR1 Agonism in Portal Hypertension Involves a AKT/FOXOA1 Dependent Regulation of H2S Generation and Endothelin-1. PLoS One 10, e0141082
26539823   Curated Info

9

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

10

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

11

Huang B, et al. (2013) Rosuvastatin-regulated post-translational phosphoproteome in human umbilical vein endothelial cells. Kaohsiung J Med Sci 29, 347-52
23768697   Curated Info

12

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

13

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

14

Sánchez FA, et al. (2011) Functional significance of cytosolic endothelial nitric-oxide synthase (eNOS): regulation of hyperpermeability. J Biol Chem 286, 30409-14
21757745   Curated Info

15

Guitton C, et al. (2011) Protective cross talk between activated protein C and TNF signaling in vascular endothelial cells: implication of EPCR, noncanonical NF-κB, and ERK1/2 MAP kinases. Am J Physiol Cell Physiol 300, C833-42
21228323   Curated Info

16

Ohashi K, et al. (2010) LKB1 deficiency in Tie2-Cre-expressing cells impairs ischemia-induced angiogenesis. J Biol Chem 285, 22291-8
20489196   Curated Info

17

Chen Z, et al. (2010) Shear stress, SIRT1, and vascular homeostasis. Proc Natl Acad Sci U S A 107, 10268-73
20479254   Curated Info

18

Mallon R, et al. (2010) Antitumor efficacy profile of PKI-402, a dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor. Mol Cancer Ther 9, 976-84
20371716   Curated Info

19

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

20

Loot AE, Schreiber JG, Fisslthaler B, Fleming I (2009) Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. J Exp Med 206, 2889-96
19934023   Curated Info

21

Chabot C, et al. (2009) New role for the protein tyrosine phosphatase DEP-1 in Akt activation and endothelial cell survival. Mol Cell Biol 29, 241-53
18936167   Curated Info

22

Ouchi N, et al. (2008) Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem 283, 32802-11
18718903   Curated Info

23

Zhang J, et al. (2008) Identification of nitric oxide as an endogenous activator of the AMP-activated protein kinase in vascular endothelial cells. J Biol Chem 283, 27452-61
18693249   Curated Info

24

Chen CA, et al. (2008) Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme. J Biol Chem 283, 27038-47
18622039   Curated Info

25

Boyle JG, et al. (2008) Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. J Biol Chem 283, 11210-7
18303014   Curated Info

26

Goubareva I, et al. (2007) Age decreases nitric oxide synthesis and responsiveness in human platelets and increases formation of monocyte-platelet aggregates. Cardiovasc Res 75, 793-802
17572401   Curated Info

27

Cheng KK, et al. (2007) Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes 56, 1387-94
17287464   Curated Info

28

Blanes MG, Oubaha M, Rautureau Y, Gratton JP (2007) Phosphorylation of tyrosine 801 of vascular endothelial growth factor receptor-2 is necessary for Akt-dependent endothelial nitric-oxide synthase activation and nitric oxide release from endothelial cells. J Biol Chem 282, 10660-9
17303569   Curated Info

29

Reihill JA, Ewart MA, Hardie DG, Salt IP (2007) AMP-activated protein kinase mediates VEGF-stimulated endothelial NO production. Biochem Biophys Res Commun 354, 1084-8
17276402   Curated Info

30

Iantorno M, et al. (2007) Ghrelin has novel vascular actions that mimic PI 3-kinase-dependent actions of insulin to stimulate production of NO from endothelial cells. Am J Physiol Endocrinol Metab 292, E756-64
17106060   Curated Info

31

Andreozzi F, et al. (2007) Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells. Mol Cell Biol 27, 2372-83
17242212   Curated Info

32

Sampaio WO, et al. (2007) Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 49, 185-92
17116756   Curated Info

33

Sun W, et al. (2006) Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation 114, 2655-62
17116771   Curated Info

34

Queen LR, et al. (2006) Mechanisms underlying beta2-adrenoceptor-mediated nitric oxide generation by human umbilical vein endothelial cells. J Physiol 576, 585-94
16873402   Curated Info

35

Ahmad S, et al. (2006) Direct evidence for endothelial vascular endothelial growth factor receptor-1 function in nitric oxide-mediated angiogenesis. Circ Res 99, 715-22
16946136   Curated Info

36

Joy S, et al. (2006) The isoflavone Equol mediates rapid vascular relaxation: Ca2+-independent activation of endothelial nitric-oxide synthase/Hsp90 involving ERK1/2 and Akt phosphorylation in human endothelial cells. J Biol Chem 281, 27335-45
16840783   Curated Info

37

Cokic VP, et al. (2006) Hydroxyurea induces the eNOS-cGMP pathway in endothelial cells. Blood 108, 184-91
16527893   Curated Info

38

Nagata D, et al. (2006) Molecular mechanism of the inhibitory effect of aldosterone on endothelial NO synthase activity. Hypertension 48, 165-71
16754797   Curated Info

39

Zhang XP, Hintze TH (2006) cAMP signal transduction induces eNOS activation by promoting PKB phosphorylation. Am J Physiol Heart Circ Physiol 290, H2376-84
16428343   Curated Info

40

Kim KY, Cheon HG (2006) Antiangiogenic effect of rosiglitazone is mediated via peroxisome proliferator-activated receptor gamma-activated maxi-K channel opening in human umbilical vein endothelial cells. J Biol Chem 281, 13503-12
16527820   Curated Info

41

Pott C, et al. (2006) eNOS translocation but not eNOS phosphorylation is dependent on intracellular Ca2+ in human atrial myocardium. Am J Physiol Cell Physiol 290, C1437-45
16338973   Curated Info

42

Gharavi NM, et al. (2006) Role of endothelial nitric oxide synthase in the regulation of SREBP activation by oxidized phospholipids. Circ Res 98, 768-76
16497987   Curated Info

43

David-Dufilho M, et al. (2005) Endothelial thrombomodulin induces Ca2+ signals and nitric oxide synthesis through epidermal growth factor receptor kinase and calmodulin kinase II. J Biol Chem 280, 35999-6006
16126727   Curated Info

44

Klinz FJ, et al. (2005) Phospho-eNOS Ser-114 in human mesenchymal stem cells: constitutive phosphorylation, nuclear localization and upregulation during mitosis. Eur J Cell Biol 84, 809-18
16270749   Curated Info

45

Uruno A, et al. (2005) Upregulation of nitric oxide production in vascular endothelial cells by all-trans retinoic acid through the phosphoinositide 3-kinase/Akt pathway. Circulation 112, 727-36
16043647   Curated Info

46

Schulz E, Anter E, Zou MH, Keaney JF (2005) Estradiol-mediated endothelial nitric oxide synthase association with heat shock protein 90 requires adenosine monophosphate-dependent protein kinase. Circulation 111, 3473-80
15967841   Curated Info

47

Anter E, et al. (2005) p38 mitogen-activated protein kinase activates eNOS in endothelial cells by an estrogen receptor alpha-dependent pathway in response to black tea polyphenols. Circ Res 96, 1072-8
15879307   Curated Info

48

Ait-Mamar B, et al. (2005) The cytosolic phospholipase A2 pathway, a safeguard of beta2-adrenergic cardiac effects in rat. J Biol Chem 280, 18881-90
15728587   Curated Info

49

Liu D, Homan LL, Dillon JS (2004) Genistein acutely stimulates nitric oxide synthesis in vascular endothelial cells by a cyclic adenosine 5'-monophosphate-dependent mechanism. Endocrinology 145, 5532-9
15319357   Curated Info

50

Thors B, Halldórsson H, Thorgeirsson G (2004) Thrombin and histamine stimulate endothelial nitric-oxide synthase phosphorylation at Ser1177 via an AMPK mediated pathway independent of PI3K-Akt. FEBS Lett 573, 175-80
15327994   Curated Info

51

Partovian C, Simons M (2004) Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Calpha in endothelial cells. Cell Signal 16, 951-7
15157674   Curated Info

52

Fulton D, et al. (2004) Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Akt- versus calcium-dependent mechanisms for nitric oxide release. J Biol Chem 279, 30349-57
15136572   Curated Info

53

Andreozzi F, et al. (2004) Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ Res 94, 1211-8
15044323   Curated Info

54

Federici M, et al. (2004) G972R IRS-1 variant impairs insulin regulation of endothelial nitric oxide synthase in cultured human endothelial cells. Circulation 109, 399-405
14707024   Curated Info

55

Chen H, et al. (2003) Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278, 45021-6
12944390   Curated Info

56

Morrow VA, et al. (2003) Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells. J Biol Chem 278, 31629-39
12791703   Curated Info

57

Salt IP, et al. (2003) High glucose inhibits insulin-stimulated nitric oxide production without reducing endothelial nitric-oxide synthase Ser1177 phosphorylation in human aortic endothelial cells. J Biol Chem 278, 18791-7
12644458   Curated Info

58

Barsacchi R, et al. (2003) Activation of endothelial nitric-oxide synthase by tumor necrosis factor-alpha: a novel pathway involving sequential activation of neutral sphingomyelinase, phosphatidylinositol-3' kinase, and Akt. Mol Pharmacol 63, 886-95
12644590   Curated Info

59

Mineo C, Yuhanna IS, Quon MJ, Shaul PW (2003) High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem 278, 9142-9
12511559   Curated Info

60

Flores C, et al. (2003) Rapid stimulation of L-arginine transport by D-glucose involves p42/44(mapk) and nitric oxide in human umbilical vein endothelium. Circ Res 92, 64-72
12522122   Curated Info

61

Ming XF, et al. (2002) Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol 22, 8467-77
12446767   Curated Info

62

Michell BJ, et al. (2002) Identification of regulatory sites of phosphorylation of the bovine endothelial nitric-oxide synthase at serine 617 and serine 635. J Biol Chem 277, 42344-51
12171920   Curated Info

63

Urbich C, et al. (2002) Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin. FASEB J 16, 706-8
11978735   Curated Info

64

Brouet A, et al. (2001) Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res 89, 866-73
11701613   Curated Info

65

Du XL, et al. (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108, 1341-8
11696579   Curated Info

66

Brouet A, et al. (2001) Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem 276, 32663-9
11425855   Curated Info

67

Montagnani M, Chen H, Barr VA, Quon MJ (2001) Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J Biol Chem 276, 30392-8
11402048   Curated Info

68

Fleming I, et al. (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88, E68-75
11397791   Curated Info

69

Michell BJ, et al. (2001) Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem 276, 17625-8
11292821   Curated Info

70

Chavakis E, et al. (2001) Oxidized LDL inhibits vascular endothelial growth factor-induced endothelial cell migration by an inhibitory effect on the Akt/endothelial nitric oxide synthase pathway. Circulation 103, 2102-7
11319202   Curated Info

71

Haynes MP, et al. (2000) Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res 87, 677-82
11029403   Curated Info

72

Butt E, et al. (2000) Endothelial nitric-oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases. J Biol Chem 275, 5179-87
10671564   Curated Info

73

Dimmeler S, et al. (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-5
10376603   Curated Info

74

Church JE, et al. Inhibition of endothelial nitric oxide synthase by the lipid phosphatase PTEN. Vascul Pharmacol 52, 191-8
19962452   Curated Info