Ser1177
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus®
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser1177  -  eNOS (human)

Site Information
TSRIRtQsFsLQERQ   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447884

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 72 ) , immunoprecipitation ( 1 , 2 , 3 , 72 ) , mass spectrometry ( 3 , 4 , 8 , 9 , 12 , 18 , 33 ) , mutation of modification site ( 2 , 3 , 27 , 34 , 46 , 58 , 62 , 64 , 65 , 66 , 69 , 72 ) , phospho-antibody ( 1 , 2 , 3 , 5 , 6 , 15 , 16 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 70 , 73 ) , phosphoamino acid analysis ( 72 ) , western blotting ( 1 , 2 , 3 , 5 , 6 , 15 , 16 , 19 , 20 , 21 , 22 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 43 , 45 , 46 , 47 , 49 , 50 , 53 , 54 , 56 , 57 , 58 , 59 , 62 , 63 , 65 , 70 , 72 , 73 )
Disease tissue studied:
HER2 positive breast cancer ( 4 ) , luminal A breast cancer ( 4 ) , luminal B breast cancer ( 4 ) , breast cancer, triple negative ( 4 ) , hepatocellular carcinoma, surrounding tissue ( 18 ) , lung cancer ( 9 ) , non-small cell lung adenocarcinoma ( 9 ) , pancreatic ductal adenocarcinoma ( 8 )
Relevant cell line - cell type - tissue:
'pancreatic, ductal'-pancreas ( 8 ) , 293 (epithelial) ( 20 ) , 3T3 (fibroblast) [SHP-2 (mouse), homozygous knockout] ( 66 ) , aorta ( 22 ) , artery-heart ( 38 ) , BAEC (endothelial) ( 23 , 27 , 29 , 46 , 54 , 64 ) , BPAEC ( 2 ) , breast ( 4 ) , CHO (fibroblast) [MAS1 (human)] ( 31 ) , COS (fibroblast) ( 27 , 46 , 51 , 58 , 65 , 67 , 72 ) , EA.hy 926 (endothelial) ( 70 ) , endothelial-aorta ( 58 ) , endothelial-umbilical vein ( 19 ) , endothelial-vein ( 48 , 69 ) , H9c2 (myoblast) ( 1 ) , HAEC (endothelial) ( 24 , 28 , 29 , 31 , 35 , 41 , 55 , 56 , 73 ) , heart ( 1 ) , HeLa (cervical) ( 24 , 57 ) , hepatocyte-liver ( 18 ) , HMVEC (endothelial) ( 44 ) , HUVEC (endothelial) ( 3 , 6 , 15 , 16 , 20 , 21 , 22 , 26 , 30 , 32 , 33 , 35 , 36 , 37 , 39 , 42 , 44 , 46 , 49 , 50 , 52 , 53 , 59 , 60 , 62 , 63 , 65 , 66 , 67 , 68 , 70 , 72 ) , HUVEC (endothelial) [IRS1 (human)] ( 53 ) , HUVEC (endothelial) [VEGFR1 (human)] ( 34 ) , HUVEC (endothelial) [VEGFR2 (human)] ( 34 ) , K562 (erythroid) ( 12 ) , lung ( 9 ) , myocyte-heart ( 40 , 47 ) , PAE (endothelial) ( 45 , 67 ) , platelet-blood ( 25 ) , preadipocyte ( 5 ) , RFPEC (endothelial) ( 50 ) , stromal ( 43 ) , SV40 ( 44 )

Upstream Regulation
Regulatory protein:
Akt1 (human) ( 21 ) , AMPKA1 (human) ( 32 ) , AMPKA2 (human) ( 45 ) , APPL (mouse) ( 26 ) , Cortactin (human) ( 3 ) , eNOS (mouse) ( 21 ) , ER-alpha (human) ( 46 ) , ERK1 (human) ( 30 ) , ERK2 (human) ( 30 ) , FSTL1 (mouse) ( 21 ) , GHSR (human) ( 29 ) , IRS1 (human) ( 53 ) , JNK1 (human) ( 30 ) , JNK2 (human) ( 30 ) , LKB1 (human) ( 15 ) , PIK3R1 (human) ( 34 , 58 ) , PKCA (human) ( 50 ) , PTEN (human) ( 34 , 73 ) , PTPRJ (human) ( 20 ) , RHOA (human) ( 60 ) , ROCK1 (human) ( 60 ) , VEGFR1 (human) ( 34 ) , VEGFR2 (human) ( 34 )
Putative in vivo kinases:
Akt1 (human) ( 58 , 60 , 72 ) , AMPKA1 (human) ( 16 , 28 , 55 )
Kinases, in vitro:
Akt1 (human) ( 23 , 61 , 72 ) , PKACA (human) ( 61 , 71 ) , PKG2 (human) ( 71 )
Treatments:
8-Rp-cAMP ( 33 , 38 ) , A-443654 ( 33 ) , A-779 ( 31 ) , A23187 ( 22 , 23 , 49 ) , AACOCF3 ( 47 ) , acadesine ( 32 , 49 , 55 ) , adiponectin ( 26 , 54 ) , aldosterone ( 37 ) , AM580 ( 44 ) , angiotensin ( 52 ) , angiotensin-(1-7) ( 31 ) , atorvastatin ( 32 , 63 ) , ATP ( 57 ) , BADGE ( 39 ) , BAPTA-AM ( 49 , 63 , 65 ) , BAR501 ( 7 ) , black_tea_polyphenols ( 46 ) , bradykinin ( 22 , 36 , 67 ) , BRL37344 ( 40 ) , calyculin_A ( 38 , 63 , 67 ) , cAMP_analog ( 41 ) , CCCP ( 49 ) , ceramide ( 57 ) , ciclosporin ( 67 ) , colforsin ( 38 , 49 ) , compound_C ( 16 , 22 , 32 , 45 ) , CSD_peptide ( 63 ) , D609 ( 57 ) , DEA-NONOate ( 22 ) , development ( 25 ) , EGF ( 49 , 57 ) , endostatin ( 62 ) , eplerenone ( 37 ) , equol ( 35 ) , estradiol ( 45 , 70 ) , fumonisin_B1 ( 57 ) , geldanamycin ( 63 , 65 ) , genistein ( 48 , 58 ) , ghrelin ( 29 ) , glucose ( 56 , 59 ) , GW_9662 ( 24 ) , H-89 ( 33 , 36 , 49 ) , H2O2 ( 1 , 19 ) , HDL ( 58 ) , high_glucose ( 6 ) , histamine ( 49 , 67 ) , hydroxyurea ( 36 ) , hyperglycemia ( 64 ) , iberiotoxin ( 39 ) , IBMX ( 49 ) , IL-6 ( 30 ) , imipramine ( 57 ) , insulin ( 6 , 30 , 52 , 53 , 54 , 55 , 56 ) , ischemia/reperfusion ( 1 ) , JNK_inhibitor_I ( 30 ) , KN-93 ( 49 , 67 ) , L-mevalonate ( 63 ) , L-NAME ( 22 , 24 , 59 ) , LE540 ( 44 ) , losartan ( 52 ) , LPS ( 2 ) , LY294002 ( 21 , 33 , 34 , 35 , 36 , 38 , 41 , 57 , 58 , 63 , 65 ) , manumycin_A ( 57 ) , metformin ( 15 ) , nicotinamide ( 16 ) , okadaic_acid ( 37 , 38 , 63 , 67 ) , Ox-PAPC ( 41 ) , PAF ( 13 ) , PAR1-activating_peptide ( 42 ) , PD98059 ( 30 , 52 , 58 ) , PDMP ( 57 ) , PF-431396 ( 1 ) , phorbol_ester ( 23 ) , pioglitazone ( 24 ) , PP2 ( 41 , 58 ) , PTIO ( 22 ) , PTX ( 33 ) , pulsatile shear stress ( 3 ) , retinoic_acid ( 44 ) , Ro31-8220 ( 68 ) , rosiglitazone ( 24 , 39 ) , rosuvastatin ( 10 ) , Rp-cAMPS ( 49 ) , salbutamol ( 33 ) , scyphostatin ( 57 ) , SH-5 ( 33 ) , siRNA ( 20 , 26 , 30 , 46 , 50 ) , SNAP ( 22 ) , SNP ( 22 ) , spermine ( 22 ) , thrombin ( 35 , 42 , 49 , 60 ) , TNF ( 24 , 57 ) , troglitazone ( 24 ) , U0126 ( 35 ) , U73122 ( 34 , 49 ) , VEGF ( 23 , 27 , 28 , 34 , 37 , 50 , 58 , 62 , 65 , 68 , 70 ) , wortmannin ( 31 , 34 , 36 , 44 , 49 , 54 , 57 , 59 , 64 , 67 ) , Y27632 ( 49 ) , zinterol ( 47 )

Downstream Regulation
Effects of modification on eNOS:
enzymatic activity, induced ( 21 , 23 , 44 , 47 , 48 , 51 , 55 , 58 , 60 , 65 , 66 , 72 ) , intracellular localization ( 43 , 47 )
Effects of modification on biological processes:
cell differentiation, altered ( 21 ) , cell differentiation, induced ( 5 ) , cell motility, altered ( 21 , 62 ) , cytoskeletal reorganization ( 69 )

References 

1

Bibli SI, et al. (2017) Tyrosine phosphorylation of eNOS regulates myocardial survival after an ischaemic insult: role of PYK2. Cardiovasc Res 113, 926-937
28444132   Curated Info

2

Kumar S, et al. (2017) Hyper-activation of pp60(Src) limits nitric oxide signaling by increasing asymmetric dimethylarginine levels during acute lung injury. Free Radic Biol Med 102, 217-228
27838434   Curated Info

3

Shentu TP, et al. (2016) AMP-Activated Protein Kinase and Sirtuin 1 Coregulation of Cortactin Contributes to Endothelial Function. Arterioscler Thromb Vasc Biol 36, 2358-2368
27758765   Curated Info

4

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

5

Johlfs MG, et al. (2015) Capillary Isoelectric Focusing Immunoassay for Fat Cell Differentiation Proteomics. PLoS One 10, e0132105
26132171   Curated Info

6

De Nigris V, et al. (2015) Short-term high glucose exposure impairs insulin signaling in endothelial cells. Cardiovasc Diabetol 14, 114
26297582   Curated Info

7

Renga B, et al. (2015) Reversal of Endothelial Dysfunction by GPBAR1 Agonism in Portal Hypertension Involves a AKT/FOXOA1 Dependent Regulation of H2S Generation and Endothelin-1. PLoS One 10, e0141082
26539823   Curated Info

8

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

9

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

10

Huang B, et al. (2013) Rosuvastatin-regulated post-translational phosphoproteome in human umbilical vein endothelial cells. Kaohsiung J Med Sci 29, 347-52
23768697   Curated Info

11

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

12

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

13

Sánchez FA, et al. (2011) Functional significance of cytosolic endothelial nitric-oxide synthase (eNOS): regulation of hyperpermeability. J Biol Chem 286, 30409-14
21757745   Curated Info

14

Guitton C, et al. (2011) Protective cross talk between activated protein C and TNF signaling in vascular endothelial cells: implication of EPCR, noncanonical NF-κB, and ERK1/2 MAP kinases. Am J Physiol Cell Physiol 300, C833-42
21228323   Curated Info

15

Ohashi K, et al. (2010) LKB1 deficiency in Tie2-Cre-expressing cells impairs ischemia-induced angiogenesis. J Biol Chem 285, 22291-8
20489196   Curated Info

16

Chen Z, et al. (2010) Shear stress, SIRT1, and vascular homeostasis. Proc Natl Acad Sci U S A 107, 10268-73
20479254   Curated Info

17

Mallon R, et al. (2010) Antitumor efficacy profile of PKI-402, a dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor. Mol Cancer Ther 9, 976-84
20371716   Curated Info

18

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

19

Loot AE, Schreiber JG, Fisslthaler B, Fleming I (2009) Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. J Exp Med 206, 2889-96
19934023   Curated Info

20

Chabot C, et al. (2009) New role for the protein tyrosine phosphatase DEP-1 in Akt activation and endothelial cell survival. Mol Cell Biol 29, 241-53
18936167   Curated Info

21

Ouchi N, et al. (2008) Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem 283, 32802-11
18718903   Curated Info

22

Zhang J, et al. (2008) Identification of nitric oxide as an endogenous activator of the AMP-activated protein kinase in vascular endothelial cells. J Biol Chem 283, 27452-61
18693249   Curated Info

23

Chen CA, et al. (2008) Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme. J Biol Chem 283, 27038-47
18622039   Curated Info

24

Boyle JG, et al. (2008) Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. J Biol Chem 283, 11210-7
18303014   Curated Info

25

Goubareva I, et al. (2007) Age decreases nitric oxide synthesis and responsiveness in human platelets and increases formation of monocyte-platelet aggregates. Cardiovasc Res 75, 793-802
17572401   Curated Info

26

Cheng KK, et al. (2007) Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes 56, 1387-94
17287464   Curated Info

27

Blanes MG, Oubaha M, Rautureau Y, Gratton JP (2007) Phosphorylation of tyrosine 801 of vascular endothelial growth factor receptor-2 is necessary for Akt-dependent endothelial nitric-oxide synthase activation and nitric oxide release from endothelial cells. J Biol Chem 282, 10660-9
17303569   Curated Info

28

Reihill JA, Ewart MA, Hardie DG, Salt IP (2007) AMP-activated protein kinase mediates VEGF-stimulated endothelial NO production. Biochem Biophys Res Commun 354, 1084-8
17276402   Curated Info

29

Iantorno M, et al. (2007) Ghrelin has novel vascular actions that mimic PI 3-kinase-dependent actions of insulin to stimulate production of NO from endothelial cells. Am J Physiol Endocrinol Metab 292, E756-64
17106060   Curated Info

30

Andreozzi F, et al. (2007) Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells. Mol Cell Biol 27, 2372-83
17242212   Curated Info

31

Sampaio WO, et al. (2007) Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 49, 185-92
17116756   Curated Info

32

Sun W, et al. (2006) Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation 114, 2655-62
17116771   Curated Info

33

Queen LR, et al. (2006) Mechanisms underlying beta2-adrenoceptor-mediated nitric oxide generation by human umbilical vein endothelial cells. J Physiol 576, 585-94
16873402   Curated Info

34

Ahmad S, et al. (2006) Direct evidence for endothelial vascular endothelial growth factor receptor-1 function in nitric oxide-mediated angiogenesis. Circ Res 99, 715-22
16946136   Curated Info

35

Joy S, et al. (2006) The isoflavone Equol mediates rapid vascular relaxation: Ca2+-independent activation of endothelial nitric-oxide synthase/Hsp90 involving ERK1/2 and Akt phosphorylation in human endothelial cells. J Biol Chem 281, 27335-45
16840783   Curated Info

36

Cokic VP, et al. (2006) Hydroxyurea induces the eNOS-cGMP pathway in endothelial cells. Blood 108, 184-91
16527893   Curated Info

37

Nagata D, et al. (2006) Molecular mechanism of the inhibitory effect of aldosterone on endothelial NO synthase activity. Hypertension 48, 165-71
16754797   Curated Info

38

Zhang XP, Hintze TH (2006) cAMP signal transduction induces eNOS activation by promoting PKB phosphorylation. Am J Physiol Heart Circ Physiol 290, H2376-84
16428343   Curated Info

39

Kim KY, Cheon HG (2006) Antiangiogenic effect of rosiglitazone is mediated via peroxisome proliferator-activated receptor gamma-activated maxi-K channel opening in human umbilical vein endothelial cells. J Biol Chem 281, 13503-12
16527820   Curated Info

40

Pott C, et al. (2006) eNOS translocation but not eNOS phosphorylation is dependent on intracellular Ca2+ in human atrial myocardium. Am J Physiol Cell Physiol 290, C1437-45
16338973   Curated Info

41

Gharavi NM, et al. (2006) Role of endothelial nitric oxide synthase in the regulation of SREBP activation by oxidized phospholipids. Circ Res 98, 768-76
16497987   Curated Info

42

David-Dufilho M, et al. (2005) Endothelial thrombomodulin induces Ca2+ signals and nitric oxide synthesis through epidermal growth factor receptor kinase and calmodulin kinase II. J Biol Chem 280, 35999-6006
16126727   Curated Info

43

Klinz FJ, et al. (2005) Phospho-eNOS Ser-114 in human mesenchymal stem cells: constitutive phosphorylation, nuclear localization and upregulation during mitosis. Eur J Cell Biol 84, 809-18
16270749   Curated Info

44

Uruno A, et al. (2005) Upregulation of nitric oxide production in vascular endothelial cells by all-trans retinoic acid through the phosphoinositide 3-kinase/Akt pathway. Circulation 112, 727-36
16043647   Curated Info

45

Schulz E, Anter E, Zou MH, Keaney JF (2005) Estradiol-mediated endothelial nitric oxide synthase association with heat shock protein 90 requires adenosine monophosphate-dependent protein kinase. Circulation 111, 3473-80
15967841   Curated Info

46

Anter E, et al. (2005) p38 mitogen-activated protein kinase activates eNOS in endothelial cells by an estrogen receptor alpha-dependent pathway in response to black tea polyphenols. Circ Res 96, 1072-8
15879307   Curated Info

47

Ait-Mamar B, et al. (2005) The cytosolic phospholipase A2 pathway, a safeguard of beta2-adrenergic cardiac effects in rat. J Biol Chem 280, 18881-90
15728587   Curated Info

48

Liu D, Homan LL, Dillon JS (2004) Genistein acutely stimulates nitric oxide synthesis in vascular endothelial cells by a cyclic adenosine 5'-monophosphate-dependent mechanism. Endocrinology 145, 5532-9
15319357   Curated Info

49

Thors B, Halldórsson H, Thorgeirsson G (2004) Thrombin and histamine stimulate endothelial nitric-oxide synthase phosphorylation at Ser1177 via an AMPK mediated pathway independent of PI3K-Akt. FEBS Lett 573, 175-80
15327994   Curated Info

50

Partovian C, Simons M (2004) Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Calpha in endothelial cells. Cell Signal 16, 951-7
15157674   Curated Info

51

Fulton D, et al. (2004) Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Akt- versus calcium-dependent mechanisms for nitric oxide release. J Biol Chem 279, 30349-57
15136572   Curated Info

52

Andreozzi F, et al. (2004) Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ Res 94, 1211-8
15044323   Curated Info

53

Federici M, et al. (2004) G972R IRS-1 variant impairs insulin regulation of endothelial nitric oxide synthase in cultured human endothelial cells. Circulation 109, 399-405
14707024   Curated Info

54

Chen H, et al. (2003) Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278, 45021-6
12944390   Curated Info

55

Morrow VA, et al. (2003) Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells. J Biol Chem 278, 31629-39
12791703   Curated Info

56

Salt IP, et al. (2003) High glucose inhibits insulin-stimulated nitric oxide production without reducing endothelial nitric-oxide synthase Ser1177 phosphorylation in human aortic endothelial cells. J Biol Chem 278, 18791-7
12644458   Curated Info

57

Barsacchi R, et al. (2003) Activation of endothelial nitric-oxide synthase by tumor necrosis factor-alpha: a novel pathway involving sequential activation of neutral sphingomyelinase, phosphatidylinositol-3' kinase, and Akt. Mol Pharmacol 63, 886-95
12644590   Curated Info

58

Mineo C, Yuhanna IS, Quon MJ, Shaul PW (2003) High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem 278, 9142-9
12511559   Curated Info

59

Flores C, et al. (2003) Rapid stimulation of L-arginine transport by D-glucose involves p42/44(mapk) and nitric oxide in human umbilical vein endothelium. Circ Res 92, 64-72
12522122   Curated Info

60

Ming XF, et al. (2002) Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol 22, 8467-77
12446767   Curated Info

61

Michell BJ, et al. (2002) Identification of regulatory sites of phosphorylation of the bovine endothelial nitric-oxide synthase at serine 617 and serine 635. J Biol Chem 277, 42344-51
12171920   Curated Info

62

Urbich C, et al. (2002) Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin. FASEB J 16, 706-8
11978735   Curated Info

63

Brouet A, et al. (2001) Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res 89, 866-73
11701613   Curated Info

64

Du XL, et al. (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108, 1341-8
11696579   Curated Info

65

Brouet A, et al. (2001) Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem 276, 32663-9
11425855   Curated Info

66

Montagnani M, Chen H, Barr VA, Quon MJ (2001) Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J Biol Chem 276, 30392-8
11402048   Curated Info

67

Fleming I, et al. (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88, E68-75
11397791   Curated Info

68

Michell BJ, et al. (2001) Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem 276, 17625-8
11292821   Curated Info

69

Chavakis E, et al. (2001) Oxidized LDL inhibits vascular endothelial growth factor-induced endothelial cell migration by an inhibitory effect on the Akt/endothelial nitric oxide synthase pathway. Circulation 103, 2102-7
11319202   Curated Info

70

Haynes MP, et al. (2000) Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res 87, 677-82
11029403   Curated Info

71

Butt E, et al. (2000) Endothelial nitric-oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases. J Biol Chem 275, 5179-87
10671564   Curated Info

72

Dimmeler S, et al. (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-5
10376603   Curated Info

73

Church JE, et al. Inhibition of endothelial nitric oxide synthase by the lipid phosphatase PTEN. Vascul Pharmacol 52, 191-8
19962452   Curated Info