Ser536
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser536  -  NFkB-p65 (human)

Site Information
sGDEDFSsIADMDFS   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447800

In vivo Characterization
Methods used to characterize site in vivo:
[32P] ATP in vitro ( 27 ) , [32P] bio-synthetic labeling ( 91 , 92 , 102 ) , immunoprecipitation ( 3 , 4 , 9 , 12 , 13 , 15 , 16 , 19 , 27 , 37 , 53 ) , mass spectrometry ( 4 , 13 , 19 ) , mutation of modification site ( 3 , 4 , 13 , 15 , 16 , 19 , 23 , 27 , 32 , 56 , 62 , 63 , 67 , 71 , 72 , 75 , 78 , 79 , 85 , 89 , 91 , 93 , 95 , 96 , 98 , 100 , 102 ) , phospho-antibody ( 1 , 3 , 5 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 29 , 32 , 33 , 34 , 35 , 37 , 38 , 39 , 40 , 42 , 43 , 44 , 45 , 46 , 47 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 62 , 63 , 64 , 65 , 66 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 94 , 95 , 97 , 98 , 99 ) , western blotting ( 1 , 3 , 4 , 5 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 15 , 16 , 18 , 19 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 29 , 32 , 33 , 34 , 35 , 37 , 38 , 39 , 40 , 42 , 43 , 45 , 46 , 47 , 50 , 51 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 62 , 63 , 64 , 65 , 66 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 79 , 84 , 86 , 87 , 88 , 89 , 91 , 92 , 94 , 95 , 97 , 98 , 99 )
Disease tissue studied:
bone cancer ( 10 , 51 ) , brain cancer ( 40 , 79 ) , glioblastoma ( 40 , 79 ) , glioma ( 40 , 79 ) , breast cancer ( 11 , 71 , 79 ) , colorectal cancer ( 7 , 11 , 47 , 98 ) , colorectal carcinoma ( 7 , 11 , 47 , 98 ) , endometrial cancer ( 72 ) , endometrial adenocarcinoma ( 72 ) , gastric cancer ( 3 , 24 ) , gastric carcinoma ( 3 , 24 ) , GIST ( 14 ) , leukemia ( 1 , 5 , 7 , 12 , 33 , 97 ) , acute myelogenous leukemia ( 1 , 97 ) , T cell leukemia ( 5 , 7 , 12 , 33 ) , liver cancer ( 9 , 49 , 63 , 79 ) , hepatocellular carcinoma ( 9 , 49 ) , lung cancer ( 17 , 21 , 46 , 52 , 56 , 57 , 58 , 69 ) , non-small cell lung cancer ( 17 , 21 , 56 , 58 ) , non-small cell lung adenocarcinoma ( 17 , 21 ) , lymphoma ( 1 , 13 , 44 , 59 , 79 ) , B cell lymphoma ( 13 , 79 ) , non-Hodgkin's lymphoma ( 13 ) , follicular lymphoma ( 13 ) , multiple myeloma ( 32 ) , prostate cancer ( 55 , 71 ) , cancer, squamous cell carcinoma ( 23 )
Relevant cell line - cell type - tissue:
'epithelial, lung' ( 57 ) , 293 (epithelial) [IL-1RA (human)] ( 73 ) , 293 (epithelial) [IRAK1 (human)] ( 76 ) , 293 (epithelial) ( 10 , 19 , 67 , 76 , 84 , 85 , 90 , 95 , 98 ) , 3T3 (fibroblast) ( 100 ) , A549 (pulmonary) ( 17 , 46 , 52 , 57 , 58 , 69 ) , AGS (gastric) ( 3 , 24 ) , BAEC (endothelial) ( 60 , 99 ) , BEAS-2B (epithelial) ( 86 ) , bone marrow ( 92 ) , BT-474 (breast cell) ( 11 ) , CV1 (fibroblast) ( 70 ) , D425 ( 38 ) , dendritic cell ( 18 ) , E.coli (bacterial) ( 27 ) , endometrium ( 72 ) , endothelial ( 60 ) , fibroblast ( 34 ) , fibroblast-lung ( 53 ) , fibroblast-skin ( 26 ) , GIST882 (gastric) ( 14 ) , HaCaT (keratinocyte) ( 8 ) , HAEC (endothelial) ( 81 ) , HCC (hepatic) ( 9 ) , HCT116 (intestinal) ( 11 ) , HEK293T (epithelial) ( 4 , 27 , 71 , 82 ) , HeLa (cervical) ( 27 , 29 , 35 , 37 , 43 , 50 , 51 , 65 , 66 , 71 , 78 , 79 , 85 , 94 , 95 , 96 , 102 ) , Hep 3B2.1-7 (hepatic) ( 79 ) , hepatocyte-liver ( 79 ) , HepG2 (hepatic) ( 9 , 63 ) , HMVEC (endothelial) ( 25 ) , HT-29 (intestinal) ( 7 , 47 , 98 ) , Huh7 (hepatic) ( 9 ) , HUVEC (endothelial) ( 22 , 54 , 68 , 74 , 87 ) , IEC-18 (epithelial) ( 39 ) , Ishikawa (endometrial) ( 72 ) , JB (epithelial) ( 77 , 89 ) , Jurkat (T lymphocyte) ( 5 , 7 , 12 , 33 , 75 , 78 , 79 , 80 , 88 , 91 , 95 ) , liver ( 16 , 49 , 63 ) , LNCaP (prostate cell) ( 71 ) , M059J (glial) ( 40 ) , M059K (glial) ( 40 ) , macrophage-bone marrow ( 82 ) , macrophage-peritoneum ( 15 ) , MCF-7 (breast cell) ( 71 , 79 ) , MEF (fibroblast) ( 15 , 16 , 60 , 75 , 79 , 93 ) , MEF (fibroblast) [IGF1R (mouse)] ( 83 , 95 ) , MEF (fibroblast) [NFkB-p65 (mouse), homozygous knockout] ( 43 ) , MGC-803 (gastric) ( 24 ) , MM.1R (B lymphocyte) ( 32 ) , MM.1S (lymphoblast) ( 32 ) , monocyte ( 26 , 64 , 84 ) , mononuclear ( 42 ) , NCI-H1299 (pulmonary) ( 58 ) , NCI-H460 (pulmonary) ( 56 ) , NCI-H929 (B lymphocyte) ( 32 ) , OCI-ly10 (B lymphocyte) ( 13 ) , OCI-ly3 (B lymphocyte) ( 13 ) , OPM-2 (plasma cell) ( 32 ) , ovarian ( 37 ) , PC3 (prostate cell) ( 55 , 71 ) , RAW 264 (macrophage) ( 95 , 97 ) , RPMI-8266 (plasma cell) ( 32 ) , Saos-2 (bone cell) ( 51 ) , SCC25 (squamous) ( 23 ) , SKBr3 (breast cell) ( 71 ) , skin ( 8 ) , SKW 6.4 (B lymphocyte) ( 79 ) , SU-DHL-4 (B lymphocyte) ( 13 ) , SUM149 (breast cell) ( 11 ) , T lymphocyte ( 12 ) , T lymphocyte-blood ( 33 , 80 ) , T/C-28a2 (chondrocyte) ( 45 ) , THP1 (myeloid) ( 1 , 97 ) , U-251 MG (glial) ( 79 ) , U-937 (myeloid) ( 1 , 44 , 59 ) , U266 (plasma cell) ( 32 ) , U2OS (bone cell) ( 10 , 62 ) , U373 MG (glial) ( 80 , 82 ) , UMSCC11A (squamous) ( 23 ) , UMSCC11B (squamous) ( 23 )

Upstream Regulation
Regulatory protein:
ANXA2 (human) ( 24 ) , CDK5RAP3 (human) ( 62 ) , CK1D (human) ( 27 ) , CYBB (human) ( 46 ) , DAXX (human) ( 66 ) , DDX58 (human) ( 46 ) , EGFR (human) ( 24 ) , GIMAP6 (human) ( 5 ) , IkB-alpha (human) ( 32 , 98 ) , IKKA (human) ( 29 , 46 , 72 , 98 ) , IKKB (human) ( 46 , 72 ) , IKKE (human) ( 46 , 71 ) , IKKE (mouse) ( 41 ) , LMP1 (herpesvirus) ( 76 ) , MAVS (human) ( 46 ) , MDA5 (human) ( 46 ) , Nik (human) ( 63 , 98 ) , NRF2 (human) ( 25 ) , PIK3R3 (human) ( 14 ) , PPP2CA (human) ( 9 ) , PTGER2 (mouse) ( 45 ) , PTGER3 (mouse) ( 45 ) , RICTOR (human) ( 8 ) , SAMHD1 (human) ( 1 ) , TBK1 (human) ( 46 , 71 ) , TBKBP1 (human) ( 94 ) , TLR3 (human) ( 69 ) , TRAF2 (human) ( 46 ) , TRAF3 (human) ( 46 ) , TRAF6 (human) ( 46 ) , USP6 (human) ( 29 ) , yopJ (bacteria) ( 73 ) , ZNF366 (human) ( 18 )
Putative in vivo kinases:
CK1G1 (human) ( 27 ) , IKKA (human) ( 23 , 84 , 102 ) , IKKB (human) ( 23 , 32 , 46 , 83 , 89 , 91 , 97 ) , IKKE (human) ( 43 , 71 , 85 ) , PKCA (human) ( 12 ) , TBK1 (human) ( 85 )
Kinases, in vitro:
CAMK4 (human) ( 96 ) , CK1G1 (human) ( 27 ) , IKKA (human) ( 79 , 84 , 101 , 102 ) , IKKB (human) ( 79 ) , IKKE (human) ( 75 , 85 ) , TBK1 (human) ( 85 )
Putative upstream phosphatases:
PPM1D (human) ( 51 ) , PPP2CA (human) ( 9 ) , PPP3CA (human) ( 33 )
Phosphatases, in vitro:
PPM1D (human) ( 51 )
Treatments:
15d-PGJ2 ( 54 ) , A23187 ( 95 ) , acetyl-boswellic_acid ( 84 ) , AG1478 ( 39 ) , AGEs ( 15 ) , AH6809 ( 45 ) , Akt-I-1,2 ( 8 , 52 ) , angiotensin_2 ( 63 ) , anti-CD28 ( 91 ) , anti-CD3 ( 91 ) , anti-CD3/CD28 ( 33 , 88 ) , anti-LT(beta)R ( 98 ) , antitrypsin ( 59 ) , bacterial infection ( 24 , 86 ) , Bay_11-7082 ( 14 , 32 , 95 ) , BI-D1870 ( 15 ) , bisindolylmaleimide ( 91 ) , bortezomib ( 72 ) , botulinum_C3_toxin ( 63 ) , Ca(2+) ( 12 ) , calyculin_A ( 32 , 95 ) , CCL5 ( 52 ) , ciclosporin ( 33 ) , cisplatin ( 23 ) , CmpdA ( 23 ) , compound_1 ( 26 ) , deferoxamine ( 60 ) , delphinidin ( 55 ) , dimethylfumarate ( 22 ) , double-stranded_RNA ( 67 ) , DPI ( 25 , 57 ) , EGF ( 50 ) , epoxomicin ( 72 ) , ethanol ( 64 ) , farnesol ( 56 ) , fluid_shear_stress ( 45 ) , genistein ( 68 ) , gomisin_A ( 35 ) , gomisin_N ( 35 ) , GSK-3_inhibitor_X ( 42 ) , H-89 ( 45 ) , heat_shock ( 34 ) , IFN-gamma ( 42 ) , IKK-beta_inhibitor_IV ( 32 ) , IL-1a ( 62 , 73 , 74 ) , IL-1b ( 10 , 19 , 26 , 53 , 79 , 85 , 95 ) , ionomycin ( 5 , 12 , 33 , 75 , 85 ) , isoliensinine ( 9 ) , JSH-23 ( 1 ) , LBH-589 ( 32 ) , LFM-A13 ( 82 ) , LIGHT ( 29 ) , LLnL ( 72 , 95 ) , LPL ( 81 ) , LPS ( 31 , 59 , 64 , 82 , 84 , 95 , 97 ) , LY294002 ( 39 , 45 , 52 , 97 ) , MG132 ( 72 , 78 , 85 , 91 ) , NAC ( 99 ) , NADA ( 80 ) , NS398 ( 45 ) , okadaic_acid ( 9 ) , PAR2-activating_peptide ( 74 ) , parthenolide ( 91 ) , PD98059 ( 15 , 53 ) , pemetrexed ( 11 ) , phorbol_ester ( 5 , 12 , 33 , 75 , 85 , 95 ) , pomegranate_wine ( 99 ) , PP2 ( 68 ) , PP242 ( 8 ) , resiquimod ( 26 ) , SB202190 ( 51 , 53 , 86 ) , SB203580 ( 70 , 74 ) , SC-514 ( 83 ) , seliciclib ( 58 ) , siRNA ( 27 , 32 , 33 , 57 , 62 , 69 , 71 , 72 , 75 , 94 ) , skin aging ( 8 ) , sorafenib ( 11 ) , SP600125 ( 70 ) , sulprostone ( 45 ) , thrombin ( 68 , 74 , 87 ) , TNF ( 12 , 13 , 17 , 22 , 27 , 29 , 35 , 37 , 40 , 43 , 50 , 51 , 58 , 60 , 62 , 65 , 66 , 77 , 79 , 80 , 81 , 85 , 89 , 90 , 94 , 95 , 97 , 99 , 102 ) , TPCA1 ( 13 ) , trichostatin_A ( 65 ) , triptolide ( 74 ) , U0126 ( 46 , 70 , 74 , 77 , 89 ) , UV ( 46 ) , UVB ( 8 ) , vanadate ( 65 ) , virus infection ( 1 , 25 , 27 , 37 , 41 , 46 , 57 , 70 ) , vorinostat ( 32 ) , wortmannin ( 45 , 92 ) , wounding ( 39 ) , Y27632 ( 87 )

Downstream Regulation
Effects of modification on NFkB-p65:
acetylation ( 32 ) , activity, induced ( 4 , 24 , 52 , 57 , 65 , 75 , 80 , 82 , 89 , 95 , 102 ) , intracellular localization ( 12 , 32 , 37 , 49 , 77 , 78 , 85 , 91 , 92 ) , molecular association, regulation ( 9 , 18 , 32 , 44 , 85 ) , phosphorylation ( 4 ) , protein degradation ( 16 , 27 ) , protein stabilization ( 91 ) , ubiquitination ( 27 )
Effects of modification on biological processes:
apoptosis, altered ( 96 ) , apoptosis, induced ( 7 ) , apoptosis, inhibited ( 23 , 32 ) , carcinogenesis, induced ( 24 ) , cell growth, altered ( 71 ) , cell motility, altered ( 52 ) , cell motility, induced ( 24 ) , signaling pathway regulation ( 16 , 24 , 27 ) , transcription, altered ( 43 , 62 , 91 , 92 , 98 , 100 ) , transcription, induced ( 12 , 15 , 17 , 18 , 19 , 32 , 41 , 57 , 63 , 65 , 75 , 80 , 93 ) , transcription, inhibited ( 16 , 27 )
Induce interaction with:
DNA ( 18 , 32 , 44 ) , TAFII31 (human) ( 85 )
Inhibit interaction with:
CDK5RAP3 (human) ( 62 ) , DNA ( 16 ) , PPP2CA (human) ( 9 )

Disease / Diagnostics Relevance
Relevant diseases:
hepatocellular carcinoma ( 49 ) , pancreatic ductal adenocarcinoma ( 2 )

References 

1

Kim ET, et al. (2019) SAMHD1 Modulates Early Steps during Human Cytomegalovirus Infection by Limiting NF-κB Activation. Cell Rep 28, 434-448.e6
31291579   Curated Info

2

Zhang D, et al. (2018) Tumor-stroma IL-1β-IRAK4 feedforward circuitry drives tumor fibrosis, chemoresistance, and poor prognosis in pancreatic cancer. Cancer Res
29363544   Curated Info

3

Zimmermann S, et al. (2017) ALPK1- and TIFA-Dependent Innate Immune Response Triggered by the Helicobacter pylori Type IV Secretion System. Cell Rep 20, 2384-2395
28877472   Curated Info

4

Ma Z, Chalkley RJ, Vosseller K (2017) Hyper-O-GlcNAcylation activates nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling through interplay with phosphorylation and acetylation. J Biol Chem 292, 9150-9163
28416608   Curated Info

5

Ho CH, Tsai SF (2017) Functional and biochemical characterization of a T cell-associated anti-apoptotic protein, GIMAP6. J Biol Chem 292, 9305-9319
28381553   Curated Info

6

Mukherjee N, Cardenas E, Bedolla R, Ghosh R (2017) SETD6 regulates NF-κB signaling in urothelial cell survival: Implications for bladder cancer. Oncotarget 8, 15114-15125
28122346   Curated Info

7

Sosna J, et al. (2016) Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells. Mol Cell Biol 36, 2626-44
27528614   Curated Info

8

Choi YJ, et al. (2016) The underlying mechanism of proinflammatory NF-κB activation by the mTORC2/Akt/IKKα pathway during skin aging. Oncotarget 7, 52685-52694
27486771   Curated Info

9

Shu G, et al. (2016) Isoliensinine induces dephosphorylation of NF-kB p65 subunit at Ser536 via a PP2A-dependent mechanism in hepatocellular carcinoma cells: roles of impairing PP2A/I2PP2A interaction. Oncotarget 7, 40285-40296
27244888   Curated Info

10

Tenekeci U, et al. (2016) K63-Ubiquitylation and TRAF6 Pathways Regulate Mammalian P-Body Formation and mRNA Decapping. Mol Cell 62, 943-57
27315556   Curated Info

11

Booth L, et al. (2016) [Pemetrexed + Sorafenib] lethality is increased by inhibition of ERBB1/2/3-PI3K-NFκB compensatory survival signaling. Oncotarget 7, 23608-32
27015562   Curated Info

12

Liu X, et al. (2016) T Cell Receptor-induced Nuclear Factor κB (NF-κB) Signaling and Transcriptional Activation Are Regulated by STIM1- and Orai1-mediated Calcium Entry. J Biol Chem 291, 8440-52
26826124   Curated Info

13

Agarwal NK, et al. (2016) Active IKKβ promotes the stability of GLI1 oncogene in diffuse large B-cell lymphoma. Blood 127, 605-15
26603838   Curated Info

14

Lai S, et al. (2016) KIT over-expression by p55PIK-PI3K leads to Imatinib-resistance in patients with gastrointestinal stromal tumors. Oncotarget 7, 1367-79
26587973   Curated Info

15

Peng Y, et al. (2016) AGE-RAGE signal generates a specific NF-κB RelA "barcode" that directs collagen I expression. Sci Rep 6, 18822
26729520   Curated Info

16

Pradère JP, et al. (2016) Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Sci Signal 9, ra85
27555662   Curated Info

17

Cui R, et al. (2015) MicroRNA-224 is implicated in lung cancer pathogenesis through targeting caspase-3 and caspase-7. Oncotarget 6, 21802-15
26307684   Curated Info

18

Søndergaard JN, et al. (2015) DC-SCRIPT Regulates IL-10 Production in Human Dendritic Cells by Modulating NF-κBp65 Activation. J Immunol 195, 1498-505
26170389   Curated Info

19

Wang B, et al. (2015) Role of Novel Serine 316 Phosphorylation of the p65 Subunit of NF-κB in Differential Gene Regulation. J Biol Chem 290, 20336-47
26082493   Curated Info

20

Kühnemuth B, et al. (2015) CUX1 modulates polarization of tumor-associated macrophages by antagonizing NF-κB signaling. Oncogene 34, 177-87
24336331   Curated Info

21

Ho MY, Liang CM, Liang SM (2015) MIG-7 and phosphorylated prohibitin coordinately regulate lung cancer invasion/metastasis. Oncotarget 6, 381-93
25575814   Curated Info

22

Gerhardt S, et al. (2015) Dimethylfumarate protects against TNF-α-induced secretion of inflammatory cytokines in human endothelial cells. J Inflamm (Lond) 12, 49
26246800   Curated Info

23

Li Z, et al. (2015) IKK phosphorylation of NF-κB at serine 536 contributes to acquired cisplatin resistance in head and neck squamous cell cancer. Am J Cancer Res 5, 3098-110
26693062   Curated Info

24

Duan H, et al. (2014) Mycoplasma Hyorhinis Infection Promotes NF-κB-Dependent Migration of Gastric Cancer Cells. Cancer Res 74, 5782-94
25136068   Curated Info

25

Gjyshi O, et al. (2014) Kaposi's sarcoma-associated herpesvirus induces Nrf2 during de novo infection of endothelial cells to create a microenvironment conducive to infection. PLoS Pathog 10, e1004460
25340789   Curated Info

26

Cushing L, et al. (2014) Interleukin 1/Toll-like receptor-induced autophosphorylation activates interleukin 1 receptor-associated kinase 4 and controls cytokine induction in a cell type-specific manner. J Biol Chem 289, 10865-75
24567333   Curated Info

27

Wang Y, Hu L, Tong X, Ye X (2014) Casein Kinase 1γ1 Inhibits the RIG-I/TLR Signaling Pathway through Phosphorylating p65 and Promoting Its Degradation. J Immunol 192, 1855-61
24442433   Curated Info

28

Ning Z, et al. (2013) The N terminus of orf virus-encoded protein 002 inhibits acetylation of NF-κB p65 by preventing Ser(276) phosphorylation. PLoS One 8, e58854
23536830   Curated Info

29

Pringle LM, et al. (2012) Atypical mechanism of NF-κB activation by TRE17/ubiquitin-specific protease 6 (USP6) oncogene and its requirement in tumorigenesis. Oncogene 31, 3525-35
22081069   Curated Info

30

Liu Y, et al. (2012) Phosphorylation of RelA/p65 promotes DNMT-1 recruitment to chromatin and represses transcription of the tumor metastasis suppressor gene BRMS1. Oncogene 31, 1143-54
21765477   Curated Info

31

Clavijo PE, Frauwirth KA (2012) Anergic CD8+ T lymphocytes have impaired NF-κB activation with defects in p65 phosphorylation and acetylation. J Immunol 188, 1213-21
22205033   Curated Info

32

Dai Y, et al. (2011) Disruption of IkappaB kinase (IKK)-mediated RelA serine 536 phosphorylation sensitizes human multiple myeloma cells to histone deacetylase (HDAC) inhibitors. J Biol Chem 286, 34036-50
21816815   Curated Info

33

Frischbutter S, et al. (2011) Dephosphorylation of Bcl-10 by calcineurin is essential for canonical NF-κB activation in Th cells. Eur J Immunol 41, 2349-57
21674474   Curated Info

34

Rovillain E, et al. (2011) Activation of nuclear factor-kappa B signalling promotes cellular senescence. Oncogene 30, 2356-66
21242976   Curated Info

35

Waiwut P, et al. (2011) Gomisin N enhances TNF-α-induced apoptosis via inhibition of the NF-κB and EGFR survival pathways. Mol Cell Biochem 350, 169-75
21188622   Curated Info

36

Guitton C, et al. (2011) Protective cross talk between activated protein C and TNF signaling in vascular endothelial cells: implication of EPCR, noncanonical NF-κB, and ERK1/2 MAP kinases. Am J Physiol Cell Physiol 300, C833-42
21228323   Curated Info

37

Diel DG, et al. (2011) Orf virus ORFV121 encodes a novel inhibitor of NF-kappaB that contributes to virus virulence. J Virol 85, 2037-49
21177808   Curated Info

38

Spiller SE, Logsdon NJ, Deckard LA, Sontheimer H (2011) Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo. BMC Cancer 11, 136
21492457   Curated Info

39

Karrasch T, Spaeth T, Allard B, Jobin C (2011) PI3K-dependent GSK3ß(Ser9)-phosphorylation is implicated in the intestinal epithelial cell wound-healing response. PLoS One 6, e26340
22039465   Curated Info

40

Ju J, et al. (2010) Phosphorylation of p50 NF-kappaB at a single serine residue by DNA-dependent protein kinase is critical for VCAM-1 expression upon TNF treatment. J Biol Chem 285, 41152-60
20966071   Curated Info

41

Bao X, et al. (2010) IKKε modulates RSV-induced NF-κB-dependent gene transcription. Virology 408, 224-31
20961594   Curated Info

42

Kai JI, et al. (2010) Glycogen synthase kinase-3β indirectly facilitates interferon-γ-induced nuclear factor-κB activation and nitric oxide biosynthesis. J Cell Biochem 111, 1522-30
20872791   Curated Info

43

Moreno R, Sobotzik JM, Schultz C, Schmitz ML (2010) Specification of the NF-kappaB transcriptional response by p65 phosphorylation and TNF-induced nuclear translocation of IKK epsilon. Nucleic Acids Res 38, 6029-44
20507904   Curated Info

44

Ghosh CC, et al. (2010) Gene-specific repression of proinflammatory cytokines in stimulated human macrophages by nuclear IκBα. J Immunol 185, 3685-93
20696864   Curated Info

45

Wang P, Zhu F, Lee NH, Konstantopoulos K (2010) Shear-induced interleukin-6 synthesis in chondrocytes: roles of E prostanoid (EP) 2 and EP3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-kappaB activation. J Biol Chem 285, 24793-804
20516073   Curated Info

46

Yoboua F, et al. (2010) Respiratory syncytial virus-mediated NF-{kappa}B p65 phosphorylation at serine 536 is dependent on RIG-I, TRAF6, and IKK{beta}. J Virol 84, 7267-77
20410276   Curated Info

47

Wang H, Moreau F, Hirota CL, MacNaughton WK (2010) Proteinase-activated receptors induce interleukin-8 expression by intestinal epithelial cells through ERK/RSK90 activation and histone acetylation. FASEB J 24, 1971-80
20065107   Curated Info

48

Renner F, Moreno R, Schmitz ML (2010) SUMOylation-dependent localization of IKKepsilon in PML nuclear bodies is essential for protection against DNA-damage-triggered cell death. Mol Cell 37, 503-15
20188669   Curated Info

49

Li W, Tan D, Zenali MJ, Brown RE (2010) Constitutive activation of nuclear factor-kappa B (NF-kB) signaling pathway in fibrolamellar hepatocellular carcinoma. Int J Clin Exp Pathol 3, 238-43
20224721   Curated Info

50

Shin MS, et al. (2009) Cross interference with TNF-alpha-induced TAK1 activation via EGFR-mediated p38 phosphorylation of TAK1-binding protein 1. Biochim Biophys Acta 1793, 1156-64
19393267   Curated Info

51

Chew J, et al. (2009) WIP1 phosphatase is a negative regulator of NF-kappaB signalling. Nat Cell Biol 11, 659-66
19377466   Curated Info

52

Huang CY, et al. (2009) CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways. Biochem Pharmacol 77, 794-803
19073147   Curated Info

53

Reber L, Vermeulen L, Haegeman G, Frossard N (2009) Ser276 phosphorylation of NF-kB p65 by MSK1 controls SCF expression in inflammation. PLoS One 4, e4393
19197368   Curated Info

54

Ho TC, et al. (2008) 15-deoxy-Delta(12,14)-prostaglandin J2 induces vascular endothelial cell apoptosis through the sequential activation of MAPKS and p53. J Biol Chem 283, 30273-88
18718914   Curated Info

55

Hafeez BB, et al. (2008) A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC3 cells in vitro and in vivo: involvement of nuclear factor-kappaB signaling. Cancer Res 68, 8564-72
18922932   Curated Info

56

Joo JH, Jetten AM (2008) NF-kappaB-dependent transcriptional activation in lung carcinoma cells by farnesol involves p65/RelA(Ser276) phosphorylation via the MEK-MSK1 signaling pathway. J Biol Chem 283, 16391-9
18424438   Curated Info

57

Fink K, et al. (2008) Dual role of NOX2 in respiratory syncytial virus- and sendai virus-induced activation of NF-kappaB in airway epithelial cells. J Immunol 180, 6911-22
18453612   Curated Info

58

Dey A, et al. (2008) R-Roscovitine simultaneously targets both the p53 and NF-kappaB pathways and causes potentiation of apoptosis: implications in cancer therapy. Cell Death Differ 15, 263-73
17975552   Curated Info

59

Bristow CL, et al. (2008) NF-kappaB signaling, elastase localization, and phagocytosis differ in HIV-1 permissive and nonpermissive U937 clones. J Immunol 180, 492-9
18097051   Curated Info

60

Seldon MP, et al. (2007) Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-kappaB RelA phosphorylation at serine 276. J Immunol 179, 7840-51
18025230   Curated Info

61

Saha RN, Jana M, Pahan K (2007) MAPK p38 regulates transcriptional activity of NF-kappaB in primary human astrocytes via acetylation of p65. J Immunol 179, 7101-9
17982102   Curated Info

62

Wang J, et al. (2007) LZAP, a putative tumor suppressor, selectively inhibits NF-kappaB. Cancer Cell 12, 239-51
17785205   Curated Info

63

Choudhary S, Lu M, Cui R, Brasier AR (2007) Involvement of a novel Rac/RhoA guanosine triphosphatase-nuclear factor-kappaB inducing kinase signaling pathway mediating angiotensin II-induced RelA transactivation. Mol Endocrinol 21, 2203-17
17595324   Curated Info

64

Mandrekar P, Jeliazkova V, Catalano D, Szabo G (2007) Acute alcohol exposure exerts anti-inflammatory effects by inhibiting IkappaB kinase activity and p65 phosphorylation in human monocytes. J Immunol 178, 7686-93
17548605   Curated Info

65

Horion J, et al. (2007) Histone deacetylase inhibitor trichostatin A sustains sodium pervanadate-induced NF-kappaB activation by delaying IkappaBalpha mRNA resynthesis: comparison with tumor necrosis factor alpha. J Biol Chem 282, 15383-93
17409387   Curated Info

66

Park J, et al. (2007) Inhibition of NF-kappaB acetylation and its transcriptional activity by Daxx. J Mol Biol 368, 388-97
17362989   Curated Info

67

Sarkar SN, et al. (2007) Two tyrosine residues of Toll-like receptor 3 trigger different steps of NF-kappa B activation. J Biol Chem 282, 3423-7
17178723   Curated Info

68

Bijli KM, et al. (2007) c-Src interacts with and phosphorylates RelA/p65 to promote thrombin-induced ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol 292, L396-404
17012367   Curated Info

69

Liu P, et al. (2007) Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J Virol 81, 1401-11
17108032   Curated Info

70

Hargett D, Rice S, Bachenheimer SL (2006) Herpes simplex virus type 1 ICP27-dependent activation of NF-kappaB. J Virol 80, 10565-78
16928747   Curated Info

71

Adli M, Baldwin AS (2006) IKK-i/IKKepsilon controls constitutive, cancer cell-associated NF-kappaB activity via regulation of Ser-536 p65/RelA phosphorylation. J Biol Chem 281, 26976-84
16840782   Curated Info

72

Dolcet X, et al. (2006) Proteasome inhibitors induce death but activate NF-kappaB on endometrial carcinoma cell lines and primary culture explants. J Biol Chem 281, 22118-30
16735506   Curated Info

73

Thiefes A, et al. (2006) The Yersinia enterocolitica effector YopP inhibits host cell signalling by inactivating the protein kinase TAK1 in the IL-1 signalling pathway. EMBO Rep 7, 838-44
16845370   Curated Info

74

Syeda F, et al. (2006) Cyclooxygenase-2 induction and prostacyclin release by protease-activated receptors in endothelial cells require cooperation between mitogen-activated protein kinase and NF-kappaB pathways. J Biol Chem 281, 11792-804
16467309   Curated Info

75

Mattioli I, et al. (2006) Inducible phosphorylation of NF-kappa B p65 at serine 468 by T cell costimulation is mediated by IKK epsilon. J Biol Chem 281, 6175-83
16407239   Curated Info

76

Song YJ, et al. (2006) IL-1 receptor-associated kinase 1 is critical for latent membrane protein 1-induced p65/RelA serine 536 phosphorylation and NF-kappaB activation. Proc Natl Acad Sci U S A 103, 2689-94
16477006   Curated Info

77

Hu J, Haseebuddin M, Young M, Colburn NH (2005) Suppression of p65 phosphorylation coincides with inhibition of IkappaBalpha polyubiquitination and degradation. Mol Carcinog 44, 274-84
16163708   Curated Info

78

Sasaki CY, Barberi TJ, Ghosh P, Longo DL (2005) Phosphorylation of RelA/p65 on serine 536 defines an I{kappa}B{alpha}-independent NF-{kappa}B pathway. J Biol Chem 280, 34538-47
16105840   Curated Info

79

Schwabe RF, Sakurai H (2005) IKKbeta phosphorylates p65 at S468 in transactivaton domain 2. FASEB J 19, 1758-60
16046471   Curated Info

80

Sancho R, et al. (2005) Mechanisms of HIV-1 inhibition by the lipid mediator N-arachidonoyldopamine. J Immunol 175, 3990-9
16148147   Curated Info

81

Kota RS, et al. (2005) Differential effects of lipoprotein lipase on tumor necrosis factor-alpha and interferon-gamma-mediated gene expression in human endothelial cells. J Biol Chem 280, 31076-84
15994321   Curated Info

82

Doyle SL, Jefferies CA, O'Neill LA (2005) Bruton's tyrosine kinase is involved in p65-mediated transactivation and phosphorylation of p65 on serine 536 during NFkappaB activation by lipopolysaccharide. J Biol Chem 280, 23496-501
15849198   Curated Info

83

Jeong SJ, et al. (2005) A novel NF-kappaB pathway involving IKKbeta and p65/RelA Ser-536 phosphorylation results in p53 Inhibition in the absence of NF-kappaB transcriptional activity. J Biol Chem 280, 10326-32
15611068   Curated Info

84

Syrovets T, et al. (2005) Acetyl-boswellic acids inhibit lipopolysaccharide-mediated TNF-alpha induction in monocytes by direct interaction with IkappaB kinases. J Immunol 174, 498-506
15611276   Curated Info

85

Buss H, et al. (2004) Constitutive and interleukin-1-inducible phosphorylation of p65 NF-{kappa}B at serine 536 is mediated by multiple protein kinases including I{kappa}B kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription. J Biol Chem 279, 55633-43
15489227   Curated Info

86

Schmeck B, et al. (2004) Streptococcus pneumoniae-induced p38 MAPK-dependent phosphorylation of RelA at the interleukin-8 promotor. J Biol Chem 279, 53241-7
15485852   Curated Info

87

Anwar KN, Fazal F, Malik AB, Rahman A (2004) RhoA/Rho-associated kinase pathway selectively regulates thrombin-induced intercellular adhesion molecule-1 expression in endothelial cells via activation of I kappa B kinase beta and phosphorylation of RelA/p65. J Immunol 173, 6965-72
15557193   Curated Info

88

Chan SM, et al. (2004) Protein microarrays for multiplex analysis of signal transduction pathways. Nat Med 10, 1390-6
15558056   Curated Info

89

Hu J, Nakano H, Sakurai H, Colburn NH (2004) Insufficient p65 phosphorylation at S536 specifically contributes to the lack of NF-kappaB activation and transformation in resistant JB6 cells. Carcinogenesis 25, 1991-2003
15192014   Curated Info

90

Teusch N, Lombardo E, Eddleston J, Knaus UG (2004) The low molecular weight GTPase RhoA and atypical protein kinase Czeta are required for TLR2-mediated gene transcription. J Immunol 173, 507-14
15210811   Curated Info

91

Mattioli I, et al. (2004) Transient and selective NF-kappa B p65 serine 536 phosphorylation induced by T cell costimulation is mediated by I kappa B kinase beta and controls the kinetics of p65 nuclear import. J Immunol 172, 6336-44
15128824   Curated Info

92

Strassheim D, et al. (2004) Phosphoinositide 3-kinase and Akt occupy central roles in inflammatory responses of Toll-like receptor 2-stimulated neutrophils. J Immunol 172, 5727-33
15100319   Curated Info

93

O'Mahony AM, et al. (2004) Human T-cell lymphotropic virus type 1 tax induction of biologically Active NF-kappaB requires IkappaB kinase-1-mediated phosphorylation of RelA/p65. J Biol Chem 279, 18137-45
14963024   Curated Info

94

Fujita F, et al. (2003) Identification of NAP1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling. Mol Cell Biol 23, 7780-93
14560022   Curated Info

95

Sakurai H, et al. (2003) Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem 278, 36916-23
12842894   Curated Info

96

Bae JS, et al. (2003) Phosphorylation of NF-kappa B by calmodulin-dependent kinase IV activates anti-apoptotic gene expression. Biochem Biophys Res Commun 305, 1094-8
12767944   Curated Info

97

Yang F, Tang E, Guan K, Wang CY (2003) IKK beta plays an essential role in the phosphorylation of RelA/p65 on serine 536 induced by lipopolysaccharide. J Immunol 170, 5630-5
12759443   Curated Info

98

Jiang X, et al. (2003) The NF-kappa B activation in lymphotoxin beta receptor signaling depends on the phosphorylation of p65 at serine 536. J Biol Chem 278, 919-26
12419817   Curated Info

99

Schubert SY, Neeman I, Resnick N (2002) A novel mechanism for the inhibition of NF-kappaB activation in vascular endothelial cells by natural antioxidants. FASEB J 16, 1931-3
12368228   Curated Info

100

Madrid LV, Mayo MW, Reuther JY, Baldwin AS (2001) Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 276, 18934-40
11259436   Curated Info

101

Schwabe RF, Schnabl B, Kweon YO, Brenner DA (2001) CD40 activates NF-kappa B and c-Jun N-terminal kinase and enhances chemokine secretion on activated human hepatic stellate cells. J Immunol 166, 6812-9
11359840   Curated Info

102

Sakurai H, et al. (1999) IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 274, 30353-6
10521409   Curated Info