Ser16
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser16  -  PIN1 (human)

Site Information
PGWEkRMsRSSGRVy   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447772

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 4 , 9 ) , [32P] bio-synthetic labeling ( 5 , 9 ) , immunoprecipitation ( 2 , 3 , 5 ) , mass spectrometry ( 3 , 4 ) , mutation of modification site ( 2 , 3 , 5 , 6 , 8 , 9 ) , phospho-antibody ( 4 ) , phosphopeptide mapping ( 9 ) , western blotting ( 2 , 3 , 4 , 8 )
Disease tissue studied:
bone cancer ( 3 ) , breast cancer ( 6 ) , colorectal cancer ( 2 ) , colorectal carcinoma ( 2 ) , neuroblastoma ( 4 )
Relevant cell line - cell type - tissue:
'neuron, hippocampal'-brain ( 4 ) , 293 (epithelial) ( 2 , 8 ) , brain ( 4 ) , HCT116 (intestinal) ( 2 ) , HEK293T (epithelial) ( 3 ) , HeLa (cervical) ( 8 , 9 ) , MCF-7 (breast cell) ( 6 ) , oocyte ( 5 ) , SH-SY5Y (neural crest) ( 4 ) , U2OS (bone cell) ( 3 )

Upstream Regulation
Regulatory protein:
OLA1 (human) ( 1 )
Putative in vivo kinases:
AurA (human) ( 3 ) , PKACA (human) ( 9 )
Kinases, in vitro:
AurA (human) ( 3 ) , PKACA (human) ( 4 , 7 , 9 )
Treatments:
colforsin ( 9 ) , MLN8054 ( 3 ) , okadaic_acid ( 4 ) , progesterone ( 5 )

Downstream Regulation
Effects of modification on PIN1:
intracellular localization ( 9 ) , molecular association, regulation ( 3 ) , phosphorylation ( 5 ) , protein degradation ( 6 ) , ubiquitination ( 6 )
Effects of modification on biological processes:
cell cycle regulation ( 8 , 9 )
Induce interaction with:
PPP1R2 (rabbit) ( 8 )
Inhibit interaction with:
BORA (human) ( 3 )

Disease / Diagnostics Relevance
Relevant diseases:
Alzheimer's disease ( 4 )

References 

1

Xu D, et al. (2016) Obg-like ATPase 1 regulates global protein serine/threonine phosphorylation in cancer cells by suppressing the GSK3β-inhibitor 2-PP1 positive feedback loop. Oncotarget 7, 3427-39
26655089   Curated Info

2

Han HJ, et al. (2016) Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α. PLoS One 11, e0147038
26784107   Curated Info

3

Lee YC, et al. (2013) Pin1 acts as a negative regulator of the G2/M transition by interacting with the Aurora-A-Bora complex. J Cell Sci 126, 4862-72
23970419   Curated Info

4

Ando K, et al. (2013) Tau pathology modulates Pin1 post-translational modifications and may be relevant as biomarker. Neurobiol Aging 34, 757-69
22926167   Curated Info

5

Nechama M, Lin CL, Richter JD (2013) An unusual two-step control of CPEB destruction by Pin1. Mol Cell Biol 33, 48-58
23090969   Curated Info

6

Khanal P, et al. (2012) Proyl isomerase Pin1 facilitates ubiquitin-mediated degradation of cyclin-dependent kinase 10 to induce tamoxifen resistance in breast cancer cells. Oncogene 31, 3845-56
22158035   Curated Info

7

Sami F, et al. (2011) Molecular Basis for an Ancient Partnership between Prolyl Isomerase Pin1 and Phosphatase Inhibitor-2. Biochemistry 50, 6567-78
21714498   Curated Info

8

Li M, Stukenberg PT, Brautigan DL (2008) Binding of phosphatase inhibitor-2 to prolyl isomerase Pin1 modifies specificity for mitotic phosphoproteins. Biochemistry 47, 292-300
18062707   Curated Info

9

Lu PJ, et al. (2002) Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem 277, 2381-4
11723108   Curated Info

10

Lu PJ, Zhou XZ, Shen M, Lu KP (1999) Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325-8
10037602   Curated Info