Ser6
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.7
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser6  -  hnRNP A1 (human)

Site Information
__MsksEsPkEPEQL   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 455946

In vivo Characterization
Methods used to characterize site in vivo:
[32P] ATP in vitro ( 10 ) , [32P] bio-synthetic labeling ( 10 ) , immunoprecipitation ( 1 , 10 ) , mass spectrometry ( 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 ) , mutation of modification site ( 1 , 10 ) , phospho-antibody ( 1 ) , western blotting ( 1 , 10 )
Disease tissue studied:
breast cancer ( 5 , 12 , 13 , 22 , 23 ) , breast ductal carcinoma ( 12 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, surrounding tissue ( 3 ) , breast cancer, triple negative ( 3 , 12 ) , cervical cancer ( 46 ) , cervical adenocarcinoma ( 46 ) , colorectal cancer ( 1 ) , colorectal carcinoma ( 1 ) , leukemia ( 29 , 54 ) , acute myelogenous leukemia ( 29 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 21 ) , acute megakaryoblastic leukemia (M7) ( 21 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 21 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 21 ) , acute myeloblastic leukemia, without maturation (M1) ( 21 ) , chronic myelogenous leukemia ( 54 ) , hepatocellular carcinoma, surrounding tissue ( 44 ) , lung cancer ( 9 , 10 , 17 , 23 , 31 , 35 , 51 ) , non-small cell lung cancer ( 23 , 51 ) , non-small cell lung adenocarcinoma ( 9 , 17 , 31 ) , small-cell lung cancer ( 10 ) , lymphoma ( 14 ) , B cell lymphoma ( 21 ) , Burkitt's lymphoma ( 14 ) , non-Hodgkin's lymphoma ( 21 ) , follicular lymphoma ( 14 ) , mantle cell lymphoma ( 14 ) , neuroblastoma ( 37 ) , ovarian cancer ( 12 ) , pancreatic ductal adenocarcinoma ( 16 ) , multiple myeloma ( 21 ) , melanoma skin cancer ( 8 )
Relevant cell line - cell type - tissue:
'brain, cerebral cortex' ( 34 ) , 'muscle, skeletal' ( 30 ) , 'pancreatic, ductal'-pancreas ( 16 ) , 293 (epithelial) ( 10 ) , 293 (epithelial) [ADRB1 (human), no information, overexpresses human beta1-adrenergic (ß1AR- HEK293)] ( 55 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 40 ) , 293 (epithelial) [AT1 (human), transfection] ( 38 ) , 293T (epithelial) ( 7 , 60 ) , 786-O (renal) [VHL (human), transfection] ( 6 ) , A498 (renal) ( 43 ) , A549 (pulmonary) ( 18 ) , AML-193 (monocyte) ( 21 ) , BJAB (B lymphocyte) ( 14 ) , breast ( 3 , 12 ) , BT-20 (breast cell) ( 23 ) , BT-474 (breast cell) ( 5 ) , BT-549 (breast cell) ( 23 ) , Calu 6 (pulmonary) ( 23 ) , CL1-0 (pulmonary) ( 35 ) , CL1-1 (pulmonary) ( 35 ) , CL1-2 (pulmonary) ( 35 ) , CL1-5 (pulmonary) ( 35 ) , CMK (megakaryoblast) ( 21 ) , CTS (myeloid) ( 21 ) , DG75 (B lymphocyte) ( 36 ) , DOHH2 ('B lymphocyte, precursor') ( 21 ) , endothelial-aorta ( 24 ) , fibroblast-skin ( 62 ) , FL-18 (B lymphocyte) ( 14 ) , FL-318 (B lymphocyte) ( 14 ) , Flp-In T-Rex-293 (epithelial) ( 26 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 26 ) , GM00130 (B lymphocyte) ( 42 ) , GP293 (fibroblast) [NPM-ALK (human), transfection] ( 39 ) , H2009 (pulmonary) ( 23 ) , H2077 (pulmonary) ( 23 ) , H2887 (pulmonary) ( 23 ) , H322 (pulmonary) ( 23 ) , H322M (pulmonary) ( 23 ) , HCC1359 (pulmonary) ( 23 ) , HCC1937 (breast cell) ( 23 ) , HCC2279 (pulmonary) ( 23 ) , HCC366 (pulmonary) ( 23 ) , HCC4006 (pulmonary) ( 23 ) , HCC78 (pulmonary) ( 23 ) , HCC827 (pulmonary) ( 23 ) , HCT116 (intestinal) ( 1 ) , HEL (erythroid) ( 21 ) , HeLa (cervical) ( 2 , 11 , 20 , 47 , 48 , 50 , 53 , 55 , 56 , 57 , 58 , 61 ) , HeLa (cervical) [OGT (rat), transfection] ( 47 ) , HeLa S3 (cervical) ( 32 , 46 , 52 ) , HeLa_Meta (cervical) ( 41 ) , HeLa_Pro (cervical) ( 41 ) , HeLa_Telo (cervical) ( 41 ) , hepatocyte-liver ( 44 ) , HMLER ('stem, breast cancer') ( 13 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 13 ) , HOP62 (pulmonary) ( 23 ) , HUES-7 ('stem, embryonic') ( 49 ) , HUES-9 ('stem, embryonic') ( 33 ) , JEKO-1 (B lymphocyte) ( 14 ) , Jurkat (T lymphocyte) ( 19 , 28 , 45 ) , K562 (erythroid) ( 20 , 48 , 54 ) , Kasumi-1 (myeloid) ( 21 ) , KG-1 (myeloid) ( 21 , 29 ) , LCLC-103H (pulmonary) ( 23 ) , LOU-NH91 (squamous) ( 23 ) , lung ( 17 ) , MCF-7 (breast cell) ( 5 , 23 ) , MDA-MB-231 (breast cell) ( 23 ) , MDA-MB-468 (breast cell) ( 23 ) , MV4-11 (macrophage) ( 21 ) , NCEB-1 (B lymphocyte) ( 14 ) , NCI-H1299 (pulmonary) ( 51 ) , NCI-H1395 (pulmonary) ( 23 ) , NCI-H1568 (pulmonary) ( 23 ) , NCI-H157 (pulmonary) ( 23 ) , NCI-H1648 (pulmonary) ( 23 ) , NCI-H1666 (pulmonary) ( 23 ) , NCI-H2030 (pulmonary) ( 23 ) , NCI-H2172 (pulmonary) ( 23 ) , NCI-H460 (pulmonary) ( 23 ) , NCI-H510 (pulmonary) ( 10 ) , NCI-H520 (squamous) ( 23 ) , NCI-H647 (pulmonary) ( 23 ) , OCI-ly1 (B lymphocyte) ( 14 ) , OPM-2 (plasma cell) ( 21 ) , ovary ( 12 ) , P31/FUJ (erythroid) ( 21 ) , PC9 (pulmonary) ( 9 , 23 ) , PC9-IR (pulmonary) ( 9 ) , Raji (B lymphocyte) ( 14 ) , RAMOS (B lymphocyte) ( 14 ) , REC-1 (B lymphocyte) ( 14 ) , RL ('B lymphocyte, precursor') ( 21 ) , RPMI-8226 (plasma cell) ( 21 ) , SH-SY5Y (neural crest) ( 15 ) , SKBr3 (breast cell) ( 22 ) , SKNBE(2) (neural crest) ( 37 ) , SU-DHL-4 (B lymphocyte) ( 14 ) , SU-DHL-6 (B lymphocyte) ( 21 ) , T lymphocyte-blood ( 25 ) , U-1810 (pulmonary) ( 31 ) , U-1810 (pulmonary) [EFNB3 (human), knockdown] ( 31 ) , U266 (plasma cell) ( 21 ) , U2OS (bone cell) [GR (human)] ( 59 ) , UPN-1 (B lymphocyte) ( 14 ) , WM239A (epidermal) ( 8 )

Upstream Regulation
Regulatory protein:
FGF2 (human) ( 10 )
Putative in vivo kinases:
P70S6KB (human) ( 1 )
Kinases, in vitro:
P70S6KB (human) ( 10 )
Treatments:
anti-CD3 ( 25 ) , doxycycline ( 10 ) , EGF ( 2 ) , LRRK2-IN-1 ( 15 ) , metastatic potential ( 35 ) , nocodazole ( 46 ) , quinalizarin ( 7 ) , rapamycin ( 50 ) , ZK-Thiazolidinone ( 32 )

Downstream Regulation
Effects of modification on hnRNP A1:
intracellular localization ( 10 ) , molecular association, regulation ( 10 ) , sumoylation ( 10 )
Effects of modification on biological processes:
apoptosis, inhibited ( 10 ) , cell growth, induced ( 1 ) , RNA splicing, induced ( 1 ) , signaling pathway regulation ( 10 ) , translation, induced ( 10 )
Induce interaction with:
14-3-3 sigma (human) ( 10 ) , 14-3-3 theta (human) ( 10 ) , RNA ( 10 )

Disease / Diagnostics Relevance
Relevant diseases:
colorectal cancer ( 1 )

References 

1

Sun Y, et al. (2017) Phosphorylation of Ser6 in hnRNPA1 by S6K2 regulates glucose metabolism and cell growth in colorectal cancer. Oncol Lett 14, 7323-7331
29344170   Curated Info

2

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

5

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

6

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

7

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

8

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

9

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

10

Roy R, et al. (2014) hnRNPA1 couples nuclear export and translation of specific mRNAs downstream of FGF-2/S6K2 signalling. Nucleic Acids Res 42, 12483-97
25324306   Curated Info

11

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

12

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

13

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

14

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

15

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

16

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

17

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

18

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

19

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

20

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

21

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

22

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

23

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

24

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

25

Ruperez P, Gago-Martinez A, Burlingame AL, Oses-Prieto JA (2012) Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells. Mol Cell Proteomics 11, 171-86
22499768   Curated Info

26

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

27

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

28

Mulhern D (2012) CST Curation Set: 13761; Year: 2012; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

29

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

30

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

31

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

32

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

33

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

34

Herskowitz JH, et al. (2010) Phosphoproteomic Analysis Reveals Site-Specific Changes in GFAP and NDRG2 Phosphorylation in Frontotemporal Lobar Degeneration. J Proteome Res 9, 6368-79
20886841   Curated Info

35

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

36

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

37

Guo A (2010) CST Curation Set: 10548; Year: 2010; Biosample/Treatment: cell line, SKNBE(2)/NGF; Disease: neuroblastoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pY Antibodies Used to Purify Peptides prior to LCMS: Phospho-Tyrosine Mouse mAb (P-Tyr-100) Cat#: 9411, PTMScan(R) Phospho-Tyr Motif (Y*) Immunoaffinity Beads Cat#: 1991
Curated Info

38

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

39

Wu F, et al. (2010) Studies of phosphoproteomic changes induced by nucleophosmin-anaplastic lymphoma kinase (ALK) highlight deregulation of tumor necrosis factor (TNF)/Fas/TNF-related apoptosis-induced ligand signaling pathway in ALK-positive anaplastic large cell lymphoma. Mol Cell Proteomics 9, 1616-32
20393185   Curated Info

40

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

41

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

42

Bennetzen MV, et al. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314-23
20164059   Curated Info

43

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

44

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

45

Possemato A (2010) CST Curation Set: 9156; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

46

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

47

Wang Z, et al. (2010) Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal 3, ra2
20068230   Curated Info

48

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

49

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

50

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

51

Tsai CF, et al. (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7, 4058-69
18707149   Curated Info

52

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

53

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

54

Stokes M (2008) CST Curation Set: 4390; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

55

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

56

McNulty DE, Annan RS (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7, 971-80
18212344   Curated Info

57

Imami K, et al. (2008) Automated Phosphoproteome Analysis for Cultured Cancer Cells by Two-Dimensional NanoLC-MS Using a Calcined Titania/C18 Biphasic Column. Anal Sci 24, 161-6
18187866   Curated Info

58

Yu LR, et al. (2007) Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res 6, 4150-62
17924679   Curated Info

59

Lowery DM, et al. (2007) Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J 26, 2262-73
17446864   Curated Info

60

Molina H, et al. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A 104, 2199-204
17287340   Curated Info

61

Olsen JV, et al. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-48
17081983   Curated Info

62

Yang F, et al. (2006) Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. J Proteome Res 5, 1252-60
16674116   Curated Info