Ser19
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.9
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser19  -  CRYAB (human)

Site Information
RPFFPFHsPsrLFDQ   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447728

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 23 ) , immunoprecipitation ( 9 ) , mass spectrometry ( 4 , 10 , 11 , 13 , 19 , 23 , 24 ) , mass spectrometry (in vitro) ( 17 ) , mutation of modification site ( 2 , 3 , 5 , 8 , 9 , 12 , 16 , 18 , 20 ) , phospho-antibody ( 1 , 2 , 5 , 8 , 12 , 20 , 21 , 22 , 23 ) , western blotting ( 1 , 2 , 3 , 8 , 9 , 12 , 18 , 22 )
Disease tissue studied:
Alexander's disease ( 21 ) , brain cancer ( 5 , 20 , 22 , 23 ) , astrocytoma ( 20 , 23 ) , glioblastoma ( 5 , 22 ) , glioblastoma multiforme ( 5 , 22 ) , glioma ( 5 , 22 ) , HER2 positive breast cancer ( 4 ) , luminal A breast cancer ( 4 ) , luminal B breast cancer ( 4 ) , breast cancer, surrounding tissue ( 4 ) , breast cancer, triple negative ( 4 ) , neuroblastoma ( 1 ) , major depressive disorder ( 10 )
Relevant cell line - cell type - tissue:
'brain, cerebral cortex' ( 10 , 13 ) , 'muscle, skeletal' ( 11 ) , ARPE19 (retinal) ( 12 ) , breast ( 4 ) , COS7 (fibroblast) ( 3 ) , HEK293T (epithelial) ( 2 ) , HeLa (cervical) ( 8 , 9 , 16 , 18 , 22 ) , L6 (myoblast) ( 2 ) , lens ( 19 , 24 ) , SH-SY5Y (neural crest) ( 1 ) , U-118MG (glial) ( 5 ) , U373 MG (glial) ( 5 , 20 , 22 , 23 )

Upstream Regulation
Putative in vivo kinases:
PLK2 (human) ( 2 )
Treatments:
arsenite ( 22 ) , BI2536 ( 2 ) , menadione ( 8 ) , methylglyoxal ( 12 ) , MG132 ( 2 ) , mutation ( 8 ) , nocodazole ( 22 ) , okadaic_acid ( 20 ) , PD98059 ( 22 ) , phorbol_ester ( 20 , 22 ) , SB202190 ( 22 ) , siRNA ( 2 )

Downstream Regulation
Effects of modification on CRYAB:
activity, induced ( 14 , 15 ) , activity, inhibited ( 3 ) , intracellular localization ( 5 , 12 , 16 ) , molecular association, regulation ( 9 , 12 , 16 , 18 , 20 ) , protein conformation ( 14 ) , protein degradation ( 18 )
Effects of modification on biological processes:
apoptosis, inhibited ( 2 , 12 ) , exocytosis, inhibited ( 5 )
Induce interaction with:
CASP3 (human) ( 12 ) , CASP7 (human) ( 12 ) , FBXO4 (human) ( 16 , 18 ) , GEMIN3 (human) ( 9 )
Inhibit interaction with:
CASP2 (human) ( 12 ) , CRYAB (human) ( 20 )

Disease / Diagnostics Relevance
Relevant diseases:
major depressive disorder ( 10 )

References 

1

Chen D, et al. (2023) ERK inhibition aids IFN-β promoter activation during EV71 infection by blocking CRYAB degradation in SH-SY5Y cells. Pathog Dis 81
37259226   Curated Info

2

Ueda S, et al. (2022) Polo-Like Kinase 2 Plays an Essential Role in Cytoprotection against MG132-Induced Proteasome Inhibition via Phosphorylation of Serine 19 in HSPB5. Int J Mol Sci 23
36232565   Curated Info

3

Ciano M, et al. (2016) Differential phosphorylation-based regulation of αB-crystallin chaperone activity for multipass transmembrane proteins. Biochem Biophys Res Commun 479, 325-330
27641668   Curated Info

4

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

5

Kore RA, Abraham EC (2016) Phosphorylation negatively regulates exosome mediated secretion of cryAB in glioma cells. Biochim Biophys Acta 1863, 368-77
26620801   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

8

Simon S, et al. (2013) Analysis of the Dominant Effects Mediated by Wild Type or R120G Mutant of αB-crystallin (HspB5) towards Hsp27 (HspB1). PLoS One 8, e70545
23950959   Curated Info

9

den Engelsman J, et al. (2013) Pseudophosphorylated αB-Crystallin Is a Nuclear Chaperone Imported into the Nucleus with Help of the SMN Complex. PLoS One 8, e73489
24023879   Curated Info

10

Martins-de-Souza D, et al. (2012) Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function. Eur Arch Psychiatry Clin Neurosci 262, 657-66
22350622   Curated Info

11

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

12

Jeong WJ, et al. (2012) Cytoplasmic and Nuclear Anti-Apoptotic Roles of αB-Crystallin in Retinal Pigment Epithelial Cells. PLoS One 7, e45754
23049853   Curated Info

13

Herskowitz JH, et al. (2010) Phosphoproteomic Analysis Reveals Site-Specific Changes in GFAP and NDRG2 Phosphorylation in Frontotemporal Lobar Degeneration. J Proteome Res 9, 6368-79
20886841   Curated Info

14

Ahmad MF, Raman B, Ramakrishna T, Rao ChM (2008) Effect of phosphorylation on alpha B-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of alpha B-crystallin and its phosphorylation-mimicking mutant. J Mol Biol 375, 1040-51
18061612   Curated Info

15

Ecroyd H, et al. (2007) Mimicking phosphorylation of alphaB-crystallin affects its chaperone activity. Biochem J 401, 129-41
16928191   Curated Info

16

den Engelsman J, et al. (2004) Mimicking phosphorylation of the small heat-shock protein alphaB-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles. Eur J Biochem 271, 4195-203
15511225   Curated Info

17

Aquilina JA, et al. (2004) Phosphorylation of alphaB-crystallin alters chaperone function through loss of dimeric substructure. J Biol Chem 279, 28675-80
15117944   Curated Info

18

den Engelsman J, Keijsers V, de Jong WW, Boelens WC (2003) The small heat-shock protein alpha B-crystallin promotes FBX4-dependent ubiquitination. J Biol Chem 278, 4699-704
12468532   Curated Info

19

MacCoss MJ, et al. (2002) Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci U S A 99, 7900-5
12060738   Curated Info

20

Ito H, et al. (2001) Phosphorylation-induced change of the oligomerization state of alpha B-crystallin. J Biol Chem 276, 5346-52
11096101   Curated Info

21

Kato K, et al. (2001) Ser-59 is the major phosphorylation site in alphaB-crystallin accumulated in the brains of patients with Alexander's disease. J Neurochem 76, 730-6
11158243   Curated Info

22

Kato K, et al. (1998) Phosphorylation of alphaB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphorylation. J Biol Chem 273, 28346-54
9774459   Curated Info

23

Ito H, et al. (1997) Phosphorylation of alphaB-crystallin in response to various types of stress. J Biol Chem 272, 29934-41
9368070   Curated Info

24

Miesbauer LR, et al. (1994) Post-translational modifications of water-soluble human lens crystallins from young adults. J Biol Chem 269, 12494-502
8175657   Curated Info