|
Powered by Cell Signaling Technology |
Site Information |
---|
MILLsELsRRRIRsI SwissProt Entrez-Gene |
Blast this site against: NCBI SwissProt PDB |
Site Group ID: 447635 |
In vivo Characterization | |
---|---|
Methods used to characterize site in vivo: | |
Disease tissue studied: | |
Relevant cell line - cell type - tissue: |
Upstream Regulation | |
---|---|
Regulatory protein: | |
Putative in vivo kinases: | |
Kinases, in vitro: | |
Putative upstream phosphatases: | |
Phosphatases, in vitro: | |
Treatments: |
Downstream Regulation | |
---|---|
Effects of modification on eIF2-alpha: | |
Effects of modification on biological processes: | |
Induce interaction with: |
Disease / Diagnostics Relevance | |
---|---|
Relevant diseases: |
References | |
---|---|
Dudka W, et al. (2022) Targeting integrated stress response with ISRIB combined with imatinib treatment attenuates RAS/RAF/MAPK and STAT5 signaling and eradicates chronic myeloid leukemia cells. BMC Cancer 22, 1254
36460969 Curated Info |
|
Bloemeke N, et al. (2022) Intramembrane client recognition potentiates the chaperone functions of calnexin. EMBO J, e110959
36314723 Curated Info |
|
Fang L, et al. (2022) UPF1 increases amino acid levels and promotes cell proliferation in lung adenocarcinoma via the eIF2α-ATF4 axis. J Zhejiang Univ Sci B 23, 863-875
36226539 Curated Info |
|
Doolittle WKL, et al. (2022) Non-genomic activation of the AKT-mTOR pathway by the mitochondrial stress response in thyroid cancer. Oncogene 41, 4893-4904
36195659 Curated Info |
|
Kour S, et al. (2022) Spirocyclic dimer SpiD7 activates the unfolded protein response to selectively inhibit growth and induce apoptosis of cancer cells. J Biol Chem 298, 101890
35378132 Curated Info |
|
Esteves P, et al. (2022) Asthmatic bronchial smooth muscle increases rhinovirus replication within the bronchial epithelium. Cell Rep 38, 110571
35354045 Curated Info |
|
Lu J, et al. (2022) Ciclopirox targets cellular bioenergetics and activates ER stress to induce apoptosis in non-small cell lung cancer cells. Cell Commun Signal 20, 37
35331268 Curated Info |
|
Booth L, et al. (2022) GZ17-6.02 and palbociclib interact to kill ER+ breast cancer cells. Oncotarget 13, 92-104
35035775 Curated Info |
|
Han Y, Zhong L, Ren F (2022) A simple method for the preparation of positive samples to preliminarily determine the quality of phosphorylation-specific antibody. PLoS One 17, e0272138
35877775 Curated Info |
|
Singh N, et al. (2022) Drug resistance mechanisms create targetable proteostatic vulnerabilities in Her2+ breast cancers. PLoS One 17, e0256788
36480552 Curated Info |
|
Di Meo D, et al. (2021) The balance of mitochondrial fission and fusion in cortical axons depends on the kinases SadA and SadB. Cell Rep 37, 110141
34936879 Curated Info |
|
Tong J, et al. (2021) BET protein degradation triggers DR5-mediated immunogenic cell death to suppress colorectal cancer and potentiate immune checkpoint blockade. Oncogene
34615996 Curated Info |
|
Dent P, Booth L, Poklepovic A, Kirkwood JM (2021) Neratinib kills B-RAF V600E melanoma via ROS-dependent autophagosome formation and death receptor signaling. Pigment Cell Melanoma Res 35
34482636 Curated Info |
|
Cai N, et al. (2021) Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nat Med
34426706 Curated Info |
|
de Reuver R, et al. (2021) ADAR1 interaction with Z-RNA promotes editing of endogenous double-stranded RNA and prevents MDA5-dependent immune activation. Cell Rep 36, 109500
34380029 Curated Info |
|
Coker-Gurkan A, et al. (2021) Atiprimod triggered apoptotic cell death via acting on PERK/eIF2α/ATF4/CHOP and STAT3/NF-ΚB axis in MDA-MB-231 and MDA-MB-468 breast cancer cells. Mol Biol Rep 48, 5233-5247
34244887 Curated Info |
|
Lu YN, et al. (2021) MARK2 phosphorylates eIF2α in response to proteotoxic stress. PLoS Biol 19, e3001096
33705388 Curated Info |
|
Mrozek EM, et al. (2021) Evaluation of Hsp90 and mTOR inhibitors as potential drugs for the treatment of TSC1/TSC2 deficient cancer. PLoS One 16, e0248380
33891611 Curated Info |
|
Dejure FR, Butzer J, Lindemann RK, Mardin BR (2020) Exploiting the metabolic dependencies of the broad amino acid transporter SLC6A14. Oncotarget 11, 4490-4503
33400734 Curated Info |
|
Kapoor A, Chen CG, Iozzo RV (2020) Endorepellin evokes an angiostatic stress signaling cascade in endothelial cells. J Biol Chem
32205445 Curated Info |
|
Jin S, et al. (2020) 5-Azacitidine Induces NOXA to Prime AML Cells for Venetoclax-Mediated Apoptosis. Clin Cancer Res
32054729 Curated Info |
|
Goh CW, et al. (2018) Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration. J Biol Chem 293, 163-176
29109149 Curated Info |
|
Namer LS, et al. (2017) An Ancient Pseudoknot in TNF-α Pre-mRNA Activates PKR, Inducing eIF2α Phosphorylation that Potently Enhances Splicing. Cell Rep 20, 188-200
28683312 Curated Info |
|
Cabrera E, et al. (2017) PERK inhibits DNA replication during the Unfolded Protein Response via Claspin and Chk1. Oncogene 36, 678-686
27375025 Curated Info |
|
Rajesh K, et al. (2016) The eIF2α serine 51 phosphorylation-ATF4 arm promotes HIPPO signaling and cell death under oxidative stress. Oncotarget 7, 51044-51058
27409837 Curated Info |
|
Booth L, et al. (2016) Multi-kinase inhibitors interact with sildenafil and ERBB1/2/4 inhibitors to kill tumor cells in vitro and in vivo. Oncotarget 7, 40398-40417
27259258 Curated Info |
|
Xu D, et al. (2016) Obg-like ATPase 1 regulates global protein serine/threonine phosphorylation in cancer cells by suppressing the GSK3β-inhibitor 2-PP1 positive feedback loop. Oncotarget 7, 3427-39
26655089 Curated Info |
|
Breaux M, et al. (2015) p300 Regulates Liver Functions by Controlling p53 and C/EBP Family Proteins through Multiple Signaling Pathways. Mol Cell Biol 35, 3005-16
26100016 Curated Info |
|
Nakamura T, et al. (2015) A Critical Role for PKR Complexes with TRBP in Immunometabolic Regulation and eIF2α Phosphorylation in Obesity. Cell Rep 11, 295-307
25843719 Curated Info |
|
Wei C, et al. (2015) Involvement of general control nonderepressible kinase 2 in cancer cell apoptosis by posttranslational mechanisms. Mol Biol Cell 26, 1044-57
25589675 Curated Info |
|
Tyagi R, et al. (2015) Rheb Inhibits Protein Synthesis by Activating the PERK-eIF2α Signaling Cascade. Cell Rep
25660019 Curated Info |
|
Wengrod J, et al. (2015) Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Sci Signal 8, ra27
25759478 Curated Info |
|
Mamais A, et al. (2014) Arsenite Stress Down-regulates Phosphorylation and 14-3-3 Binding of Leucine-rich Repeat Kinase 2 (LRRK2), Promoting Self-association and Cellular Redistribution. J Biol Chem 289, 21386-400
24942733 Curated Info |
|
Shiina N, Nakayama K (2014) RNA Granule Assembly and Disassembly Modulated by Nuclear Factor Associated with Double-stranded RNA 2 and Nuclear Factor 45. J Biol Chem 289, 21163-21180
24920670 Curated Info |
|
Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569 Curated Info |
|
Vendelbo MH, et al. (2014) Fasting Increases Human Skeletal Muscle Net Phenylalanine Release and This Is Associated with Decreased mTOR Signaling. PLoS One 9, e102031
25020061 Curated Info |
|
Zhou W, Jeyaraman K, Yusoff P, Shenolikar S (2013) Phosphorylation at Tyrosine 262 Promotes GADD34 Protein Turnover. J Biol Chem 288, 33146-55
24092754 Curated Info |
|
Bhattacharya S, et al. (2013) Anti-tumorigenic effects of Type 1 interferon are subdued by integrated stress responses. Oncogene 32, 4214-21
23045272 Curated Info |
|
Wippich F, et al. (2013) Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152, 791-805
23415227 Curated Info |
|
Shen S, et al. (2011) Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 30, 4544-56
21577201 Curated Info |
|
Mounir Z, et al. (2011) Akt determines cell fate through inhibition of the PERK-eIF2α phosphorylation pathway. Sci Signal 4, ra62
21954288 Curated Info |
|
Jin HO, et al. (2011) TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1. Oncogene 30, 3792-801
21460850 Curated Info |
|
Martins I, et al. (2011) Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 30, 1147-58
21151176 Curated Info |
|
Muaddi H, et al. (2010) Phosphorylation of eIF2α at serine 51 is an important determinant of cell survival and adaptation to glucose deficiency. Mol Biol Cell 21, 3220-31
20660158 Curated Info |
|
Bourougaa K, et al. (2010) Endoplasmic reticulum stress induces G2 cell-cycle arrest via mRNA translation of the p53 isoform p53/47. Mol Cell 38, 78-88
20385091 Curated Info |
|
Chen YJ, et al. (2010) Differential regulation of CHOP translation by phosphorylated eIF4E under stress conditions. Nucleic Acids Res 38, 764-77
19934253 Curated Info |
|
Zhong D, et al. (2009) The Glycolytic Inhibitor 2-Deoxyglucose Activates Multiple Prosurvival Pathways through IGF1R. J Biol Chem 284, 23225-33
19574224 Curated Info |
|
Krähling V, et al. (2009) Severe acute respiratory syndrome coronavirus triggers apoptosis via protein kinase R but is resistant to its antiviral activity. J Virol 83, 2298-309
19109397 Curated Info |
|
Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332 Curated Info |
|
Sugeno N, et al. (2008) Serine 129 phosphorylation of alpha-synuclein induces unfolded protein response-mediated cell death. J Biol Chem 283, 23179-88
18562315 Curated Info |
|
Krishnamoorthy J, Mounir Z, Raven JF, Koromilas AE (2008) The eIF2alpha kinases inhibit vesicular stomatitis virus replication independently of eIF2alpha phosphorylation. Cell Cycle 7, 2346-51
18677106 Curated Info |
|
Thiaville MM, et al. (2008) Deprivation of protein or amino acid induces C/EBPbeta synthesis and binding to amino acid response elements, but its action is not an absolute requirement for enhanced transcription. Biochem J 410, 473-84
18052938 Curated Info |
|
Ozcan U, et al. (2008) Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 29, 541-51
18342602 Curated Info |
|
Raven JF, et al. (2008) PKR and PKR-like endoplasmic reticulum kinase induce the proteasome-dependent degradation of cyclin D1 via a mechanism requiring eukaryotic initiation factor 2alpha phosphorylation. J Biol Chem 283, 3097-108
18063576 Curated Info |
|
Su Q, et al. (2008) Modulation of the Eukaryotic Initiation Factor 2 {alpha}-Subunit Kinase PERK by Tyrosine Phosphorylation. J Biol Chem 283, 469-75
17998206 Curated Info |
|
Fritsch RM, et al. (2007) Translational repression of MCL-1 couples stress-induced eIF2 alpha phosphorylation to mitochondrial apoptosis initiation. J Biol Chem 282, 22551-62
17553788 Curated Info |
|
Zhang P, Samuel CE (2007) Protein kinase PKR plays a stimulus- and virus-dependent role in apoptotic death and virus multiplication in human cells. J Virol 81, 8192-200
17522227 Curated Info |
|
Zykova TA, et al. (2007) Involvement of ERKs, RSK2 and PKR in UVA-induced signal transduction toward phosphorylation of eIF2alpha (Ser(51)). Carcinogenesis 28, 1543-51
17404396 Curated Info |
|
Ramya TN, Surolia N, Surolia A (2007) 15-deoxyspergualin inhibits eukaryotic protein synthesis through eIF2alpha phosphorylation. Biochem J 401, 411-20
16952278 Curated Info |
|
Wakula P, et al. (2006) The translation initiation factor eIF2beta is an interactor of protein phosphatase-1. Biochem J 400, 377-83
16987104 Curated Info |
|
Latreille M, Larose L (2006) Nck in a complex containing the catalytic subunit of protein phosphatase 1 regulates eukaryotic initiation factor 2alpha signaling and cell survival to endoplasmic reticulum stress. J Biol Chem 281, 26633-44
16835242 Curated Info |
|
Scheuner D, et al. (2006) Double-stranded RNA-dependent protein kinase phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 mediates apoptosis. J Biol Chem 281, 21458-68
16717090 Curated Info |
|
Suragani RN, Ghosh S, Ehtesham NZ, Ramaiah KV (2006) Expression and purification of the subunits of human translational initiation factor 2 (eIF2): phosphorylation of eIF2 alpha and beta. Protein Expr Purif 47, 225-33
16289913 Curated Info |
|
Suragani RN, Kamindla R, Ehtesham NZ, Ramaiah KV (2005) Interaction of recombinant human eIF2 subunits with eIF2B and eIF2alpha kinases. Biochem Biophys Res Commun 338, 1766-72
16288713 Curated Info |
|
Dey M, et al. (2005) Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition. Cell 122, 901-13
16179259 Curated Info |
|
Dar AC, Dever TE, Sicheri F (2005) Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Cell 122, 887-900
16179258 Curated Info |
|
McEwen E, et al. (2005) Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem 280, 16925-33
15684421 Curated Info |
|
Shenberger JS, et al. (2005) Hyperoxia alters the expression and phosphorylation of multiple factors regulating translation initiation. Am J Physiol Lung Cell Mol Physiol 288, L442-9
15542544 Curated Info |
|
Blais JD, et al. (2004) Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24, 7469-82
15314157 Curated Info |
|
Chen G, et al. (2004) Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 18, 1162-4
15132987 Curated Info |
|
Kazemi S, et al. (2004) Control of alpha subunit of eukaryotic translation initiation factor 2 (eIF2 alpha) phosphorylation by the human papillomavirus type 18 E6 oncoprotein: implications for eIF2 alpha-dependent gene expression and cell death. Mol Cell Biol 24, 3415-29
15060162 Curated Info |
|
Kebache S, et al. (2004) Nck-1 antagonizes the endoplasmic reticulum stress-induced inhibition of translation. J Biol Chem 279, 9662-71
14676213 Curated Info |
|
Kim SH, Gunnery S, Choe JK, Mathews MB (2002) Neoplastic progression in melanoma and colon cancer is associated with increased expression and activity of the interferon-inducible protein kinase, PKR. Oncogene 21, 8741-8
12483527 Curated Info |
|
Koumenis C, et al. (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22, 7405-16
12370288 Curated Info |
|
Patel J, Wang X, Proud CG (2001) Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1. Biochem J 358, 497-503
11513750 Curated Info |
|
Vattem KM, Staschke KA, Wek RC (2001) Mechanism of activation of the double-stranded-RNA-dependent protein kinase, PKR: role of dimerization and cellular localization in the stimulation of PKR phosphorylation of eukaryotic initiation factor-2 (eIF2). Eur J Biochem 268, 3674-84
11432733 Curated Info |
|
Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271-4
9930704 Curated Info |
|
Donzé O, et al. (1995) Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J 14, 3828-34
7641700 Curated Info |
|
Srivastava SP, Davies MV, Kaufman RJ (1995) Calcium depletion from the endoplasmic reticulum activates the double-stranded RNA-dependent protein kinase (PKR) to inhibit protein synthesis. J Biol Chem 270, 16619-24
7622470 Curated Info |
|
Pathak VK, Schindler D, Hershey JW (1988) Generation of a mutant form of protein synthesis initiation factor eIF-2 lacking the site of phosphorylation by eIF-2 kinases. Mol Cell Biol 8, 993-5
3352609 Curated Info |