Ser153
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser153  -  treacle (human)

Site Information
ktVANLLsGksPRKs   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 2526064

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 3 , 4 , 6 , 7 , 8 , 9 , 10 , 11 , 12 )
Disease tissue studied:
HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, surrounding tissue ( 1 ) , breast cancer, triple negative ( 1 ) , leukemia ( 8 ) , acute myelogenous leukemia ( 8 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 6 ) , acute megakaryoblastic leukemia (M7) ( 6 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 6 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 6 ) , acute myeloblastic leukemia, without maturation (M1) ( 6 ) , lung cancer ( 7 ) , non-small cell lung cancer ( 7 ) , B cell lymphoma ( 6 ) , non-Hodgkin's lymphoma ( 6 ) , multiple myeloma ( 6 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Treatments:
PI-103 ( 8 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

3

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

4

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

5

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

6

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

7

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

8

Alcolea MP, et al. (2012) Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance. Mol Cell Proteomics 11, 453-66
22547687   Curated Info

9

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

10

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

11

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

12

Imami K, et al. (2008) Automated Phosphoproteome Analysis for Cultured Cancer Cells by Two-Dimensional NanoLC-MS Using a Calcined Titania/C18 Biphasic Column. Anal Sci 24, 161-6
18187866   Curated Info