Ser563
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser563  -  NCL (human)

Site Information
ELQGPrGsPNARSQP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 456893

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 )
Disease tissue studied:
breast cancer ( 5 , 9 , 10 , 20 , 21 ) , breast ductal carcinoma ( 9 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, surrounding tissue ( 3 ) , breast cancer, triple negative ( 3 , 9 ) , cervical cancer ( 41 ) , cervical adenocarcinoma ( 41 ) , leukemia ( 27 , 29 ) , acute myelogenous leukemia ( 27 ) , T cell leukemia ( 29 ) , lung cancer ( 13 , 21 , 35 ) , non-small cell lung cancer ( 17 , 21 ) , non-small cell lung adenocarcinoma ( 13 , 17 ) , neuroblastoma ( 19 ) , ovarian cancer ( 9 ) , pancreatic ductal adenocarcinoma ( 12 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 28 ) , 'pancreatic, ductal'-pancreas ( 12 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 39 ) , 293 (epithelial) [AT1 (human), transfection] ( 37 ) , 786-O (renal) [VHL (human), transfection] ( 6 ) , 786-O (renal) ( 6 ) , A498 (renal) ( 40 ) , A549 (pulmonary) ( 14 ) , breast ( 3 , 9 ) , BT-20 (breast cell) ( 21 ) , BT-474 (breast cell) ( 5 ) , BT-549 (breast cell) ( 21 ) , Calu 6 (pulmonary) ( 21 ) , CL1-0 (pulmonary) ( 35 ) , CL1-1 (pulmonary) ( 35 ) , CL1-2 (pulmonary) ( 35 ) , CL1-5 (pulmonary) ( 35 ) , endothelial-aorta ( 22 ) , fibroblast-skin ( 51 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 23 ) , Flp-In T-Rex-293 (epithelial) ( 23 ) , H2009 (pulmonary) ( 21 ) , H2077 (pulmonary) ( 21 ) , H2887 (pulmonary) ( 21 ) , H322M (pulmonary) ( 21 ) , HCC1359 (pulmonary) ( 21 ) , HCC1937 (breast cell) ( 21 ) , HCC2279 (pulmonary) ( 21 ) , HCC366 (pulmonary) ( 21 ) , HCC4006 (pulmonary) ( 21 ) , HCC78 (pulmonary) ( 21 ) , HCC827 (pulmonary) ( 21 ) , HCT116 (intestinal) ( 43 ) , HEK293T (epithelial) ( 7 , 49 ) , HeLa (cervical) ( 2 , 8 , 18 , 30 , 34 , 42 , 44 , 45 , 46 , 47 , 48 , 50 ) , HeLa S3 (cervical) ( 32 , 41 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 10 ) , HMLER ('stem, breast cancer') ( 10 ) , HOP62 (pulmonary) ( 21 ) , HT-29 (intestinal) ( 52 ) , HUES-9 ('stem, embryonic') ( 33 ) , Jurkat (T lymphocyte) ( 15 , 31 , 36 , 38 ) , K562 (erythroid) ( 18 , 42 ) , KG-1 (myeloid) ( 27 ) , Kit225 (T lymphocyte) ( 29 ) , LCLC-103H (pulmonary) ( 21 ) , LOU-NH91 (squamous) ( 21 ) , lung ( 13 ) , MCF-7 (breast cell) ( 5 , 21 ) , MDA-MB-231 (breast cell) ( 21 ) , MDA-MB-468 (breast cell) ( 21 ) , NB10 (neural crest) ( 19 ) , NCI-H1395 (pulmonary) ( 21 ) , NCI-H1568 (pulmonary) ( 21 ) , NCI-H157 (pulmonary) ( 21 ) , NCI-H1648 (pulmonary) ( 21 ) , NCI-H1666 (pulmonary) ( 21 ) , NCI-H2030 (pulmonary) ( 21 ) , NCI-H2172 (pulmonary) ( 21 ) , NCI-H2228 (pulmonary) ( 17 ) , NCI-H322 (pulmonary) ( 21 ) , NCI-H460 (pulmonary) ( 21 ) , NCI-H520 (squamous) ( 21 ) , NCI-H647 (pulmonary) ( 21 ) , NPC (neural crest) ( 19 ) , ovary ( 9 ) , PC9 (pulmonary) ( 21 ) , SH-SY5Y (neural crest) [LRRK2 (human), transfection, over-expression of LRRK2(G2019S)] ( 11 ) , SH-SY5Y (neural crest) ( 11 ) , SKBr3 (breast cell) ( 20 ) , Vero E6-S ('epithelial, kidney') ( 1 )

Upstream Regulation
Treatments:
BI_4834 ( 30 ) , EGF ( 2 ) , metastatic potential ( 35 ) , nocodazole ( 41 )

References 

1

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 182
32645325   Curated Info

2

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

5

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

6

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

7

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

8

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

9

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

10

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

11

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

12

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

13

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

14

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

15

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

16

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

17

Rikova K (2013) CST Curation Set: 18529; Year: 2013; Biosample/Treatment: cell line, H2228/crizotinib, geldanamycin; Disease: -; TMT: Y; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST], LXRXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXXS*/T*) (110B7E) Rabbit mAb Cat#: 9614 Phospho-AMPK Substrate Motif [LXRXX(pS/pT) MultiMab(TM) Rabbit mAb mix Cat#: 5759
Curated Info

18

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

19

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

20

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

21

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

22

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

23

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

24

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

25

Rikova K (2012) CST Curation Set: 14271; Year: 2012; Biosample/Treatment: cell line, Tumor pilot study 2mg/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

26

Rikova K (2012) CST Curation Set: 14275; Year: 2012; Biosample/Treatment: cell line, Tumor pilot study 2mg/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

27

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

28

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

29

Osinalde N, et al. (2011) Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics. J Proteomics 75, 177-91
21722762   Curated Info

30

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

31

Guo A (2011) CST Curation Set: 11424; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

32

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

33

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

34

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

35

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

36

Possemato A (2010) CST Curation Set: 10720; Year: 2010; Biosample/Treatment: cell line, Jurkat/pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

37

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

38

Possemato A (2010) CST Curation Set: 10051; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

39

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

40

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

41

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

42

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

43

Nagano K, et al. (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-74
19415658   Curated Info

44

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

45

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

46

McNulty DE, Annan RS (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7, 971-80
18212344   Curated Info

47

Imami K, et al. (2008) Automated Phosphoproteome Analysis for Cultured Cancer Cells by Two-Dimensional NanoLC-MS Using a Calcined Titania/C18 Biphasic Column. Anal Sci 24, 161-6
18187866   Curated Info

48

Yu LR, et al. (2007) Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res 6, 4150-62
17924679   Curated Info

49

Molina H, et al. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A 104, 2199-204
17287340   Curated Info

50

Olsen JV, et al. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-48
17081983   Curated Info

51

Yang F, et al. (2006) Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. J Proteome Res 5, 1252-60
16674116   Curated Info

52

Kim JE, Tannenbaum SR, White FM (2005) Global phosphoproteome of HT-29 human colon adenocarcinoma cells. J Proteome Res 4, 1339-46
16083285   Curated Info