|
Powered by Cell Signaling Technology |
Site Information |
---|
GVPLRtKsPtPEsST SwissProt Entrez-Gene |
Blast this site against: NCBI SwissProt PDB |
Site Group ID: 2424902 |
Associated spectra: 1 CST |
In vivo Characterization | |
---|---|
Methods used to characterize site in vivo: | |
Disease tissue studied: | |
Relevant cell line - cell type - tissue: |
Upstream Regulation | |
---|---|
Treatments: |
References | |
---|---|
Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 32
28852199 Curated Info |
|
Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261 Curated Info |
|
Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257 Curated Info |
|
Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331 Curated Info |
|
Gnad F, et al. (2013) Systems-wide Analysis of K-Ras, Cdc42, and PAK4 Signaling by Quantitative Phosphoproteomics. Mol Cell Proteomics 12, 2070-80
23608596 Curated Info |
|
Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750 Curated Info |
|
Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622 Curated Info |
|
Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645 Curated Info |
|
Wang Y, et al. (2011) Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 286, 18190-201
21454597 Curated Info |
|
Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079 Curated Info |
|
Zhou J (2010) CST Curation Set: 9671; Year: 2010; Biosample/Treatment: cell line, F9/untreated; Disease: testicular cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info |
|
Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140 Curated Info |
|
Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708 Curated Info |
|
Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507 Curated Info |
|
Possemato A (2007) CST Curation Set: 3395; Year: 2007; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info |