Thr172
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr172  -  AMPKA2 (mouse)

Site Information
sDGEFLRtsCGsPNY   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448026

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 7 ) , immunoprecipitation ( 20 , 25 ) , mass spectrometry ( 23 , 26 , 31 , 33 , 35 , 36 , 37 , 39 , 40 , 41 , 42 , 43 ) , mutation of modification site ( 20 , 21 , 25 ) , peptide sequencing ( 7 ) , phospho-antibody ( 4 , 8 , 9 , 10 , 15 , 18 , 20 , 21 , 22 , 24 , 25 , 27 , 28 , 29 , 30 , 32 , 34 , 38 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 ) , western blotting ( 4 , 7 , 8 , 9 , 10 , 15 , 18 , 20 , 21 , 22 , 24 , 25 , 28 , 29 , 30 , 32 , 34 , 38 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 52 , 54 )
Disease tissue studied:
lung cancer ( 4 , 49 ) , non-small cell lung cancer ( 4 ) , non-small cell lung adenocarcinoma ( 4 ) , non-small cell large cell lung carcinoma ( 4 ) , fibrosarcoma of soft tissue ( 7 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 23 ) , 'fat, brown' ( 36 ) , 'kidney, cortex' ( 27 ) , 'muscle, skeletal' ( 28 , 30 , 46 , 51 , 52 ) , 'muscle, skeletal' [CAMKK1 (mouse)] ( 48 ) , 293 (epithelial) ( 7 , 21 ) , 3T3 (fibroblast) ( 25 ) , 3T3-L1 (fibroblast) ( 47 ) , A549 (pulmonary) ( 4 ) , AML12 (hepatic) ( 21 ) , brain ( 33 , 36 , 37 , 40 , 43 ) , C2C12 (myoblast) ( 9 , 10 , 30 , 47 ) , Calu 6 (pulmonary) ( 4 ) , Calu-1 (squamous) ( 4 ) , COR-L23 (pulmonary) ( 4 ) , embryo ( 33 ) , GT1-7 (neuron) ( 34 ) , heart ( 42 , 45 , 50 , 52 ) , HEK293T (epithelial) ( 25 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 26 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 26 ) , HL-1 (myocyte) ( 26 ) , HUVEC (endothelial) ( 20 ) , kidney ( 36 ) , L6 (myoblast) ( 47 ) , L929 (fibroblast) ( 7 ) , leukocyte-blood ( 18 ) , liver ( 31 , 33 , 35 , 39 , 41 , 44 , 54 ) , lung ( 4 , 15 , 36 , 49 ) , macrophage-peritoneum ( 15 ) , MEF (fibroblast) ( 7 , 25 , 32 , 50 ) , MEF (fibroblast) [IGF1R (mouse)] ( 53 ) , muscle ( 8 , 38 ) , myocyte-heart ( 29 , 50 ) , NCI-H1299 (pulmonary) ( 4 ) , osteoblast-calvarium ( 22 ) , pancreas ( 36 ) , spleen ( 36 ) , testis ( 36 ) , vascular smooth muscle cell ('muscle, smooth') ( 18 )

Upstream Regulation
Regulatory protein:
ASB2 (mouse) ( 8 ) , CAMKK1 (mouse) ( 48 ) , DOK3 (mouse) ( 15 ) , GLUT1 (mouse) ( 22 ) , HGK (mouse) ( 50 ) , KRas (human) ( 4 ) , LDH-B (human) ( 4 ) , LKB1 (mouse) ( 38 , 52 ) , RIPK3 (human) ( 7 ) , SCD (mouse) ( 54 ) , SIRT1 (human) ( 44 ) , TAK1 (mouse) ( 50 )
Putative in vivo kinases:
AMPKA2 (human) ( 20 ) , RIPK3 (human) ( 7 )
Treatments:
A-769662 ( 25 , 29 ) , acadesine ( 30 , 47 , 50 ) , adiponectin ( 47 ) , angiotensin_2 ( 18 , 20 ) , anoxia ( 52 ) , benzo(a)pyrene ( 49 ) , betulinic_acid ( 10 ) , birinapant ( 7 ) , caffeine ( 46 ) , clozapine ( 19 ) , colforsin ( 21 ) , compound_C ( 9 , 15 , 18 , 29 ) , dantrolene ( 46 ) , exercise ( 24 , 28 ) , food deprivation ( 25 ) , glucose ( 22 , 34 ) , glucose_starvation ( 47 , 53 ) , GSK'872 ( 7 ) , H2O2 ( 20 ) , HG9-91-01 ( 21 ) , high-fat diet ( 27 ) , high_glucose ( 20 ) , insulin ( 9 , 48 ) , ischemia ( 50 , 52 ) , ischemia/reperfusion ( 45 ) , KN-93 ( 46 ) , leptin ( 47 ) , leucine_deprivation ( 25 ) , lncRNAs ( 4 ) , low_glucose ( 34 ) , metformin ( 20 , 25 , 45 , 50 ) , muscle contraction ( 48 ) , NTCU ( 49 ) , oligomycin ( 50 ) , Pentadecanoic acid ( 9 ) , pomegranate_wine ( 49 ) , pravastatin ( 18 ) , pterosin_B ( 21 ) , pyridoxine ( 15 ) , Q-VD-OPh ( 7 ) , rapamycin ( 25 ) , STO-609 ( 46 , 48 ) , SU6656 ( 38 ) , telmisartan ( 20 ) , tempol ( 18 ) , TNF ( 7 ) , Trametinib ( 4 ) , Z-VAD-FMK ( 7 )

Downstream Regulation
Effects of modification on AMPKA2:
enzymatic activity, induced ( 7 , 10 , 18 , 22 , 47 , 53 ) , intracellular localization ( 47 ) , phosphorylation ( 7 , 10 ) , protein degradation ( 8 )
Effects of modification on biological processes:
autophagy, induced ( 7 ) , carcinogenesis, inhibited ( 4 ) , cell differentiation, inhibited ( 22 ) , cell growth, inhibited ( 4 ) , cell motility, inhibited ( 4 ) , cytoskeletal reorganization ( 8 ) , signaling pathway regulation ( 9 ) , transcription, altered ( 47 ) , transcription, induced ( 18 ) , transcription, inhibited ( 15 )

References 

1

Tang X, et al. (2021) Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun 12, 5058
34433808   Curated Info

2

Li Z, et al. (2021) Porcine Haemagglutinating Encephalomyelitis Virus Triggers Neural Autophagy Independent of ULK1. J Virol, JVI0085121
34287052   Curated Info

3

Sanvee GM, Bouitbir J, Krähenbühl S (2021) C2C12 myoblasts are more sensitive to the toxic effects of simvastatin than myotubes and show impaired proliferation and myotube formation. Biochem Pharmacol 190, 114649
34111424   Curated Info

4

La Montagna M, et al. (2021) AMPKα loss promotes KRAS-mediated lung tumorigenesis. Cell Death Differ
34040167   Curated Info

5

Deneka AY, et al. (2021) Nedd9 restrains autophagy to limit growth of early stage non-small cell lung cancer. Cancer Res
34006524   Curated Info

6

Franczyk MP, He M, Yoshino J (2021) Removal of Epididymal Visceral Adipose Tissue Prevents Obesity-Induced Multi-organ Insulin Resistance in Male Mice. J Endocr Soc 5, bvab024
33869980   Curated Info

7

Wu W, et al. (2021) TNF-induced necroptosis initiates early autophagy events via RIPK3-dependent AMPK activation, but inhibits late autophagy. Autophagy, 1-18
33779513   Curated Info

8

Goodman CA, et al. (2021) Dynamic Changes to the Skeletal Muscle Proteome and Ubiquitinome Induced by the E3 Ligase, ASB2β. Mol Cell Proteomics, 100050
33516941   Curated Info

9

Fu WC, et al. (2021) Pentadecanoic acid promotes basal and insulin-stimulated glucose uptake in C2C12 myotubes. Food Nutr Res 65
33613155   Curated Info

10

Song TJ, et al. (2021) Antidiabetic effects of betulinic acid mediated by the activation of the AMP-activated protein kinase pathway. PLoS One 16, e0249109
33819291   Curated Info

11

Park SJ, et al. (2021) Potent PDE4 inhibitor activates AMPK and Sirt1 to induce mitochondrial biogenesis. PLoS One 16, e0253269
34138962   Curated Info

12

Alqurashi RS, et al. (2021) A Warburg-like metabolic program coordinates Wnt, AMPK, and mTOR signaling pathways in epileptogenesis. PLoS One 16, e0252282
34358226   Curated Info

13

Liu Y, et al. (2020) TLR9 and beclin¿¿1 crosstalk regulates muscle AMPK activation in exercise. Nature
32051584   Curated Info

14

Di Magno L, et al. (2020) Phenformin Inhibits Hedgehog-Dependent Tumor Growth through a Complex I-Independent Redox/Corepressor Module. Cell Rep
32049007   Curated Info

15

Shan MR, et al. (2020) Vitamin B6 inhibits macrophage activation to prevent lipopolysaccharide-induced acute pneumonia in mice. J Cell Mol Med
31970902   Curated Info

16

Zuo A, et al. (2020) CTRP9 knockout exaggerates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy through inhibiting the LKB1/AMPK pathway. J Cell Mol Med
31930700   Curated Info

17

Kuramoto K, He C (2018) The BECN1-BCL2 complex regulates insulin secretion and storage in mice. Autophagy 14, 2026-2028
30081744   Curated Info

18

Ma H, et al. (2017) Pravastatin activates activator protein 2 alpha to augment the angiotensin II-induced abdominal aortic aneurysms. Oncotarget 8, 14294-14305
28179583   Curated Info

19

Choi Y, et al. (2017) Clozapine Improves Memory Impairment and Reduces Aβ Level in the Tg-APPswe/PS1dE9 Mouse Model of Alzheimer's Disease. Mol Neurobiol 54, 450-460
26742522   Curated Info

20

Shang F, et al. (2016) Cardiovascular Protective Effect of Metformin and Telmisartan: Reduction of PARP1 Activity via the AMPK-PARP1 Cascade. PLoS One 11, e0151845
26986624   Curated Info

21

Itoh Y, et al. (2015) Salt-inducible Kinase 3 Signaling Is Important for the Gluconeogenic Programs in Mouse Hepatocytes. J Biol Chem 290, 17879-93
26048985   Curated Info

22

Wei J, et al. (2015) Glucose Uptake and Runx2 Synergize to Orchestrate Osteoblast Differentiation and Bone Formation. Cell 161, 1576-91
26091038   Curated Info

23

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

24

Knudsen JG, et al. (2015) Exercise-induced regulation of key factors in substrate choice and gluconeogenesis in mouse liver. Mol Cell Biochem 403, 209-17
25702176   Curated Info

25

Dai S, et al. (2015) Suppression of the HSF1-mediated proteotoxic stress response by the metabolic stress sensor AMPK. EMBO J 34, 275-93
25425574   Curated Info

26

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

27

Davies M, et al. (2014) Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK. Am J Physiol Renal Physiol 307, F96-F106
24808538   Curated Info

28

Pagano AF, et al. (2014) Autophagy and protein turnover signaling in slow-twitch muscle during exercise. Med Sci Sports Exerc 46, 1314-25
24389528   Curated Info

29

Chen S, et al. (2014) Alpha1 catalytic subunit of AMPK modulates contractile function of cardiomyocytes through phosphorylation of troponin I. Life Sci 98, 75-82
24447627   Curated Info

30

Yamada E, Bastie CC (2014) Disruption of Fyn SH3 Domain Interaction with a Proline-Rich Motif in Liver Kinase B1 Results in Activation of AMP-Activated Protein Kinase. PLoS One 9, e89604
24586906   Curated Info

31

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

32

Schröfelbauer B, et al. (2012) NEMO Ensures Signaling Specificity of the Pleiotropic IKKβ by Directing Its Kinase Activity toward IκBα. Mol Cell 47, 111-21
22633953   Curated Info

33

Stokes MP, et al. (2012) PTMScan Direct: Identification and Quantification of Peptides from Critical Signaling Proteins by Immunoaffinity Enrichment Coupled with LC-MS/MS. Mol Cell Proteomics 11, 187-201
22322096   Curated Info

34

Bang S, et al. (2012) AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase. Proc Natl Acad Sci U S A 109, 616-20
22203993   Curated Info

35

Guo A (2011) CST Curation Set: 12478; Year: 2011; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

36

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

37

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

38

Yamada E, et al. (2010) Fyn-dependent regulation of energy expenditure and body weight is mediated by tyrosine phosphorylation of LKB1. Cell Metab 11, 113-24
20142099   Curated Info

39

Zhou J (2009) CST Curation Set: 7426; Year: 2009; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

40

Zhou J (2009) CST Curation Set: 7413; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

41

Zhou J (2009) CST Curation Set: 7425; Year: 2009; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

42

Zhou J (2009) CST Curation Set: 7418; Year: 2009; Biosample/Treatment: tissue, heart/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

43

Zhou J (2009) CST Curation Set: 7414; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

44

Hou X, et al. (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283, 20015-26
18482975   Curated Info

45

Calvert JW, et al. (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57, 696-705
18083782   Curated Info

46

Jensen TE, et al. (2007) Caffeine-induced Ca(2+) release increases AMPK-dependent glucose uptake in rodent soleus muscle. Am J Physiol Endocrinol Metab 293, E286-92
17405829   Curated Info

47

Suzuki A, et al. (2007) Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the alpha2 form of AMP-activated protein kinase. Mol Cell Biol 27, 4317-27
17420279   Curated Info

48

Witczak CA, Fujii N, Hirshman MF, Goodyear LJ (2007) Ca2+/calmodulin-dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake independent of AMP-activated protein kinase and Akt activation. Diabetes 56, 1403-9
17287469   Curated Info

49

Khan N, et al. (2007) Oral consumption of pomegranate fruit extract inhibits growth and progression of primary lung tumors in mice. Cancer Res 67, 3475-82
17389758   Curated Info

50

Xie M, et al. (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci U S A 103, 17378-83
17085580   Curated Info

51

Kramer HF, et al. (2006) AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle. J Biol Chem 281, 31478-85
16935857   Curated Info

52

Sakamoto K, et al. (2006) Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1. Am J Physiol Endocrinol Metab 290, E780-8
16332922   Curated Info

53

Jones RG, et al. (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18, 283-93
15866171   Curated Info

54

Dobrzyn P, et al. (2004) Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc Natl Acad Sci U S A 101, 6409-14
15096593   Curated Info

55

Daniel PV, et al. NF-κB p65 regulates hepatic lipogenesis by promoting nuclear entry of ChREBP in response to a high carbohydrate diet. J Biol Chem 296, 100714
33930463   Curated Info