Ser80
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.8
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser80  -  ACC1 (human)

Site Information
LHIRssMsGLHLVkQ   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448292

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 6 , 12 , 45 , 75 ) , mass spectrometry ( 7 , 8 , 10 , 11 , 12 , 18 , 20 , 21 , 22 , 24 , 25 , 30 , 31 , 32 , 36 , 37 , 38 , 39 , 42 , 44 , 46 , 48 , 49 , 50 , 53 , 54 , 55 , 57 , 58 , 60 , 61 , 63 , 64 , 66 , 68 , 71 , 72 , 73 , 74 , 76 , 80 , 81 , 84 , 85 , 96 , 106 ) , mutation of modification site ( 6 , 45 , 77 , 93 , 98 ) , phospho-antibody ( 3 , 4 , 5 , 6 , 9 , 12 , 15 , 16 , 17 , 23 , 33 , 34 , 35 , 41 , 45 , 47 , 51 , 52 , 56 , 59 , 62 , 65 , 67 , 69 , 75 , 77 , 78 , 82 , 83 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 , 105 ) , phosphoamino acid analysis ( 93 ) , phosphopeptide mapping ( 93 ) , western blotting ( 3 , 4 , 5 , 6 , 9 , 12 , 15 , 16 , 17 , 23 , 33 , 34 , 35 , 41 , 45 , 47 , 51 , 52 , 56 , 59 , 62 , 65 , 67 , 69 , 75 , 77 , 78 , 82 , 83 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 97 , 98 , 99 , 100 , 103 , 104 )
Disease tissue studied:
ataxia-telangiectasia ( 88 ) , bone cancer ( 12 , 45 , 51 , 93 ) , brain cancer ( 65 ) , glioblastoma ( 65 ) , glioma ( 65 ) , breast cancer ( 10 , 22 , 39 , 93 , 94 ) , breast ductal carcinoma ( 22 ) , HER2 positive breast cancer ( 8 ) , luminal A breast cancer ( 8 ) , luminal B breast cancer ( 8 ) , breast cancer, surrounding tissue ( 8 ) , breast cancer, triple negative ( 8 , 22 ) , cervical cancer ( 33 , 68 , 82 , 89 , 98 , 103 ) , cervical adenocarcinoma ( 33 , 68 , 82 , 89 , 98 ) , cervical squamous cell carcinoma ( 103 ) , colorectal cancer ( 51 ) , colorectal carcinoma ( 51 ) , leukemia ( 44 , 46 , 84 ) , acute myelogenous leukemia ( 44 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 38 ) , acute megakaryoblastic leukemia (M7) ( 38 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 38 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 38 ) , acute myeloblastic leukemia, without maturation (M1) ( 38 ) , chronic myelogenous leukemia ( 46 , 84 ) , liver cancer ( 15 , 16 , 83 ) , hepatocellular carcinoma ( 15 , 16 ) , hepatocellular carcinoma, surrounding tissue ( 66 ) , lung cancer ( 3 , 9 , 18 , 30 , 39 , 60 , 80 , 82 , 89 , 98 ) , non-small cell lung cancer ( 3 , 9 , 39 , 80 ) , non-small cell lung adenocarcinoma ( 18 , 30 ) , non-small cell large cell lung carcinoma ( 9 ) , lymphoma ( 6 ) , B cell lymphoma ( 38 ) , non-Hodgkin's lymphoma ( 38 ) , neuroblastoma ( 37 ) , ovarian cancer ( 22 ) , multiple myeloma ( 38 ) , melanoma skin cancer ( 93 ) , fibrosarcoma of soft tissue ( 104 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 59 , 97 , 100 , 105 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 63 ) , 293 (epithelial) [AT1 (human), transfection] ( 61 ) , 293 (epithelial) ( 5 , 21 , 23 , 35 , 41 , 52 , 69 , 78 , 83 ) , 3T3-L1 (fibroblast) ( 34 , 98 ) , 786-O (renal) [VHL (human), transfection] ( 11 ) , 786-O (renal) ( 11 ) , A431 (epithelial) ( 106 ) , A498 (renal) ( 64 ) , A549 (pulmonary) ( 31 , 82 , 89 , 98 ) , adipose tissue ( 56 ) , AML-193 (monocyte) ( 38 ) , aorta ( 82 ) , ARPE19 (retinal) ( 87 ) , BAEC (endothelial) ( 23 , 82 , 89 , 91 , 98 ) , BOSC ( 77 ) , breast ( 8 , 22 ) , BT-20 (breast cell) ( 39 ) , BT-474 (breast cell) ( 10 ) , BT-549 (breast cell) ( 39 ) , C2C12 (myoblast) ( 69 ) , Calu 6 (pulmonary) ( 39 ) , CL1-0 (pulmonary) ( 60 ) , CL1-1 (pulmonary) ( 60 ) , CL1-2 (pulmonary) ( 60 ) , CL1-5 (pulmonary) ( 60 ) , CMK (megakaryoblast) ( 38 ) , CTS (myeloid) ( 38 ) , DOHH2 ('B lymphocyte, precursor') ( 38 ) , endothelial-aorta ( 102 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 42 ) , Flp-In T-Rex-293 (epithelial) ( 42 ) , FT/pEBS7 (fibroblast) ( 88 ) , granulosa ( 92 ) , H2009 (pulmonary) ( 39 ) , H2077 (pulmonary) ( 39 ) , H2887 (pulmonary) ( 39 ) , H322M (pulmonary) ( 39 ) , HAEC (endothelial) ( 86 , 90 ) , HCC1359 (pulmonary) ( 39 ) , HCC1937 (breast cell) ( 39 ) , HCC2279 (pulmonary) ( 39 ) , HCC366 (pulmonary) ( 39 ) , HCC4006 (pulmonary) ( 39 ) , HCC78 (pulmonary) ( 39 ) , HCC827 (pulmonary) ( 39 ) , HCT116 (intestinal) ( 51 , 73 ) , HEK293T (epithelial) ( 4 , 16 , 45 ) , HEL (erythroid) ( 38 ) , HeLa (cervical) ( 7 , 16 , 20 , 36 , 48 , 51 , 58 , 65 , 67 , 71 , 76 , 77 , 81 , 85 , 86 , 88 , 93 , 96 ) , HeLa S3 (cervical) ( 33 , 55 , 68 , 82 , 89 , 98 ) , Hep 3B2.1-7 (hepatic) ( 15 , 16 ) , hepatocyte-liver ( 66 ) , HepG2 (hepatic) ( 15 , 83 , 101 ) , HOP62 (pulmonary) ( 39 ) , HT1080 (fibroblast) ( 104 ) , HUES-9 ('stem, embryonic') ( 57 ) , Huh7 (hepatic) ( 15 ) , HUVEC (endothelial) ( 6 , 62 , 82 , 95 ) , Jurkat (T lymphocyte) ( 32 , 49 , 50 , 53 , 54 , 72 , 74 ) , K562 (erythroid) ( 36 , 46 , 71 , 84 ) , Kasumi-1 (myeloid) ( 38 ) , KB (squamous) ( 103 ) , KG-1 (myeloid) ( 38 , 44 ) , L3 (lymphoblastoid) ( 88 ) , L40 (lymphoblastoid) ( 88 ) , LCLC-103H (pulmonary) ( 39 ) , liver ( 25 ) , LLC-PK1 (renal) ( 47 ) , LOU-NH91 (squamous) ( 39 ) , lung ( 30 ) , MCF-7 (breast cell) ( 39 , 93 , 94 ) , MDA-MB-231 (breast cell) ( 39 ) , MDA-MB-468 (breast cell) ( 39 ) , MDCK (epithelial) ( 23 ) , MEF (fibroblast) ( 4 , 6 , 23 ) , mIMCD-3 (epithelial) ( 23 ) , MMDD1 (renal) ( 23 , 75 ) , MV4-11 (macrophage) ( 38 , 73 ) , NB10 (neural crest) ( 37 ) , NCI-H1299 (pulmonary) ( 3 , 80 ) , NCI-H1395 (pulmonary) ( 39 ) , NCI-H1568 (pulmonary) ( 39 ) , NCI-H157 (pulmonary) ( 9 , 39 ) , NCI-H1648 (pulmonary) ( 39 ) , NCI-H1666 (pulmonary) ( 39 ) , NCI-H2030 (pulmonary) ( 39 ) , NCI-H2172 (pulmonary) ( 39 ) , NCI-H322 (pulmonary) ( 39 ) , NCI-H460 (pulmonary) ( 9 , 39 ) , NCI-H520 (squamous) ( 39 ) , NCI-H647 (pulmonary) ( 39 ) , NPC (neural crest) ( 37 ) , OPM-2 (plasma cell) ( 38 ) , ovary ( 22 ) , P31/FUJ (erythroid) ( 38 ) , PAE (endothelial) ( 99 ) , PC9 (pulmonary) ( 18 , 39 ) , retina ( 98 ) , RL ('B lymphocyte, precursor') ( 38 ) , RPMI-8266 (plasma cell) ( 38 ) , SH-SY5Y (neural crest) [LRRK2 (human), transfection, over-expression of LRRK2(G2019S)] ( 24 ) , SU-DHL-6 (B lymphocyte) ( 38 ) , thoracic aorta ( 89 ) , U-251 MG (glial) ( 65 ) , U-937 (myeloid) ( 6 ) , U266 (plasma cell) ( 38 ) , U2OS (bone cell) ( 12 , 45 , 51 , 93 ) , vascular smooth muscle cell ('muscle, smooth') ( 89 , 98 ) , WM239A (melanocyte) ( 93 ) , WM35 (melanocyte) ( 93 ) , YZ5 ( 88 )

Upstream Regulation
Regulatory protein:
ALDOA (human) ( 4 ) , AMPKA1 (human) ( 87 , 91 , 95 ) , AMPKA1 (mouse) ( 70 ) , AMPKA2 (human) ( 87 ) , AMPKA2 (mouse) ( 70 ) , CAMKK1 (human) ( 94 ) , CAMKK2 (human) ( 94 ) , HK1 (human) ( 4 ) , HRas (human) ( 16 ) , LKB1 (human) ( 9 , 16 , 62 , 82 ) , LKB1 (mouse) ( 70 ) , MAGE-A6 (human) ( 17 ) , MAGEA3 (human) ( 17 ) , PKCZ (human) ( 82 ) , PKM (human) ( 3 ) , PKM iso2 (human) ( 3 ) , PPP1R12C (human) ( 45 ) , PPP2CA (human) ( 89 ) , PPP2CA (mouse) ( 89 ) , SIRT1 (human) ( 83 ) , SKP2 (human) ( 16 ) , TIF1B (human) ( 17 ) , ULK1 (human) ( 52 )
Putative in vivo kinases:
AMPKA1 (human) ( 12 , 75 , 86 , 90 ) , AMPKA2 (human) ( 101 )
Treatments:
2-deoxyglucose ( 45 , 67 , 103 ) , 2-hydroxyestradiol ( 99 ) , 2-methoxyestradiol ( 99 ) , 5-iodotubercidin ( 87 , 99 ) , A-769662 ( 4 , 23 , 45 , 70 ) , A23187 ( 67 ) , A79662 ( 6 ) , ABT ( 99 ) , acadesine ( 9 , 14 , 28 , 34 , 47 , 56 , 70 , 79 , 87 , 89 , 92 , 95 , 102 ) , angiotensin_2 ( 40 ) , apelin ( 56 ) , aspirin ( 41 ) , atorvastatin ( 95 ) , BAPTA-AM ( 82 ) , berberine ( 4 ) , bisindolylmaleimide ( 99 ) , compound_C ( 23 , 28 , 45 , 79 , 95 , 99 ) , dipyridamole ( 87 ) , DNP ( 102 ) , EDTA ( 70 ) , EGF ( 71 ) , estradiol ( 99 ) , exercise ( 97 , 105 ) , faslodex ( 99 ) , glucose ( 4 , 28 , 101 ) , glucose_starvation ( 16 , 45 , 69 ) , glutamine ( 4 ) , Go_6983 ( 28 , 99 ) , GW_9662 ( 86 ) , H2O2 ( 28 , 79 , 87 , 88 ) , HH-F3 ( 15 ) , hypotonic_buffer ( 75 ) , hypoxia ( 11 ) , insulin ( 97 ) , ionomycin ( 94 ) , ischemia ( 22 ) , laminar flow ( 91 ) , LPS ( 59 ) , LY294002 ( 99 ) , metformin ( 33 , 62 , 92 , 101 ) , miRNA ( 65 ) , nicotinamide ( 83 ) , nocodazole ( 35 , 68 ) , okadaic_acid ( 89 ) , ONOO(-) ( 33 ) , oscillatory_flow ( 91 ) , palmitate ( 89 ) , PD98059 ( 99 ) , phenformin ( 47 , 67 ) , phorbol_ester ( 98 ) , pioglitazone ( 86 ) , PKC-zeta_inhibitor ( 98 ) , PP2 ( 99 ) , resveratrol ( 47 , 83 ) , Ro_41-0960 ( 99 ) , rosiglitazone ( 86 ) , S17834 ( 83 ) , salicylate ( 41 ) , SII_angiotensin_2 ( 61 ) , simvastatin ( 82 ) , siRNA ( 82 , 87 ) , sorbitol ( 102 ) , splitomicin ( 83 ) , starvation_medium ( 45 , 52 ) , STO-609 ( 82 , 86 ) , SU6656 ( 5 ) , troglitazone ( 86 ) , U0126 ( 71 ) , UV ( 79 ) , wortmannin ( 91 )

Downstream Regulation
Effects of modification on ACC1:
intracellular localization ( 47 )
Effects of modification on biological processes:
apoptosis, inhibited ( 3 ) , autophagy, induced ( 3 )

References 

1

Ladli M, et al. (2018) Finely-tuned regulation of AMP-activated protein kinase (AMPK) is crucial for human adult erythropoiesis. Haematologica
30309849   Curated Info

2

Hunkeler M, et al. (2018) Structural basis for regulation of human acetyl-CoA carboxylase. Nature 558, 470-474
29899443   Curated Info

3

Prakasam G, et al. (2017) Pyruvate kinase M knockdown-induced signaling via AMP-activated protein kinase promotes mitochondrial biogenesis, autophagy, and cancer cell survival. J Biol Chem 292, 15561-15576
28778925   Curated Info

4

Zhang CS, et al. (2017) Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112-116
28723898   Curated Info

5

Ross FA, et al. (2017) Mechanisms of Paradoxical Activation of AMPK by the Kinase Inhibitors SU6656 and Sorafenib. Cell Chem Biol 24, 813-824.e4
28625738   Curated Info

6

Rutherford C, et al. (2016) Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Sci Signal 9, ra109
27919027   Curated Info

7

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

8

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

9

Liu F, et al. (2016) LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions. Oncotarget 7, 2519-31
26506235   Curated Info

10

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

11

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

12

Schaffer BE, et al. (2015) Identification of AMPK Phosphorylation Sites Reveals a Network of Proteins Involved in Cell Invasion and Facilitates Large-Scale Substrate Prediction. Cell Metab 22, 907-921
26456332   Curated Info

13

Ritho J, Arold ST, Yeh ET (2015) A Critical SUMO1 Modification of LKB1 Regulates AMPK Activity during Energy Stress. Cell Rep 12, 734-42
26212320   Curated Info

14

Jhaveri TZ, et al. (2015) AMP-activated kinase (AMPK) regulates activity of HER2 and EGFR in breast cancer. Oncotarget 6, 14754-65
26143491   Curated Info

15

Jhuang HJ, et al. (2015) Gluconeogenesis, lipogenesis, and HBV replication are commonly regulated by PGC-1α-dependent pathway. Oncotarget 6, 7788-803
25762623   Curated Info

16

Lee SW, et al. (2015) Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress. Mol Cell 57, 1022-33
25728766   Curated Info

17

Pineda CT, et al. (2015) Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160, 715-28
25679763   Curated Info

18

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

19

Yun H, et al. (2014) AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. FEBS J 281, 4421-38
25065674   Curated Info

20

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

21

Wang R, et al. (2014) Global discovery of high-NaCl-induced changes of protein phosphorylation. Am J Physiol Cell Physiol 307, C442-54
24965592   Curated Info

22

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

23

Fraser SA, et al. (2014) Activation of AMPK reduces the co-transporter activity of NKCC1. Mol Membr Biol 31, 95-102
24702155   Curated Info

24

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

25

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

26

Treebak JT, et al. (2014) Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. J Physiol 592, 351-75
24247980   Curated Info

27

Lau AW, Liu P, Inuzuka H, Gao D (2014) SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am J Cancer Res 4, 245-55
24959379   Curated Info

28

van den Bout I, et al. (2013) Collaboration of AMPK and PKC to induce phosphorylation of Ser413 on PIP5K1B resulting in decreased kinase activity and reduced PtdIns(4,5)P2 synthesis in response to oxidative stress and energy restriction. Biochem J 455, 347-58
23909401   Curated Info

29

Yi G, et al. (2013) Low concentration of metformin induces a p53-dependent senescence in hepatoma cells via activation of the AMPK pathway. Int J Oncol 43, 1503-10
23982736   Curated Info

30

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

31

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

32

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

33

Zhu H, et al. (2013) Phosphorylation of serine 399 in LKB1 protein short form by protein kinase Cζ is required for its nucleocytoplasmic transport and consequent AMP-activated protein kinase (AMPK) activation. J Biol Chem 288, 16495-505
23612973   Curated Info

34

Hatakeyama H, Kanzaki M (2013) Regulatory mode shift of Tbc1d1 is required for acquisition of insulin-responsive GLUT4-trafficking activity. Mol Biol Cell 24, 809-17
23325788   Curated Info

35

Mao L, et al. (2013) AMPK phosphorylates GBF1 for mitotic Golgi disassembly. J Cell Sci 126, 1498-505
23418352   Curated Info

36

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

37

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

38

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

39

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

40

Wang S, et al. (2012) Activation of AMP-activated protein kinase α2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo. Nat Med 18, 902-10
22561688   Curated Info

41

Hawley SA, et al. (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918-22
22517326   Curated Info

42

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

43

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

44

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

45

Banko MR, et al. (2011) Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis. Mol Cell 44, 878-92
22137581   Curated Info

46

Mulhern D (2011) CST Curation Set: 13266; Year: 2011; Biosample/Treatment: cell line, K-562/untreated &'||' untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

47

Kodiha M, Ho-Wo-Cheong D, Stochaj U (2011) Pharmacological AMP-kinase activators have compartment-specific effects on cell physiology. Am J Physiol Cell Physiol 301, C1307-15
21918180   Curated Info

48

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

49

Mulhern D (2011) CST Curation Set: 12710; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP
Curated Info

50

Mulhern D (2011) CST Curation Set: 12711; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP
Curated Info

51

Malik SA, et al. (2011) BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 30, 3918-29
21460857   Curated Info

52

Löffler AS, et al. (2011) Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 7, 696-706
21460634   Curated Info

53

Guo A (2011) CST Curation Set: 11984; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP
Curated Info

54

Guo A (2011) CST Curation Set: 11989; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) 14-3-3 Binding Motif Antibody Cat#: 9601
Curated Info

55

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

56

Attané C, et al. (2011) Apelin stimulates glucose uptake but not lipolysis in human adipose tissue ex vivo. J Mol Endocrinol 46, 21-8
21062936   Curated Info

57

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

58

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

59

Andreasen AS, et al. (2011) Type 2 diabetes is associated with altered NF-κB DNA binding activity, JNK phosphorylation, and AMPK phosphorylation in skeletal muscle after LPS. PLoS One 6, e23999
21931634   Curated Info

60

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

61

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

62

Ohashi K, et al. (2010) LKB1 deficiency in Tie2-Cre-expressing cells impairs ischemia-induced angiogenesis. J Biol Chem 285, 22291-8
20489196   Curated Info

63

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

64

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

65

Godlewski J, et al. (2010) MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37, 620-32
20227367   Curated Info

66

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

67

Fogarty S, et al. (2010) Calmodulin-dependent protein kinase kinase-beta activates AMPK without forming a stable complex: synergistic effects of Ca2+ and AMP. Biochem J 426, 109-18
19958286   Curated Info

68

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

69

Kim JH, et al. (2010) Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake. PLoS One 5, e9600
20231899   Curated Info

70

Zagórska A, et al. (2010) New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci Signal 3, ra25
20354225   Curated Info

71

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

72

Possemato A (2009) CST Curation Set: 8350; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (K/R)XX[ST]
Curated Info

73

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

74

Possemato A (2009) CST Curation Set: 6744; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (K/R)XX[ST]
Curated Info

75

Cook N, et al. (2009) Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells. Am J Physiol Renal Physiol 296, F801-9
19176702   Curated Info

76

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

77

Ray H, Suau F, Vincent A, Dalla Venezia N (2009) Cell cycle regulation of the BRCA1/acetyl-CoA-carboxylase complex. Biochem Biophys Res Commun 378, 615-9
19061860   Curated Info

78

Fogarty S, Hardie DG (2009) C-terminal phosphorylation of LKB1 is not required for regulation of AMP-activated protein kinase, BRSK1, BRSK2, or cell cycle arrest. J Biol Chem 284, 77-84
18854318   Curated Info

79

Cao C, et al. (2008) AMP-activated protein kinase contributes to UV- and H2O2-induced apoptosis in human skin keratinocytes. J Biol Chem 283, 28897-908
18715874   Curated Info

80

Tsai CF, et al. (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7, 4058-69
18707149   Curated Info

81

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

82

Choi HC, et al. (2008) Reactive nitrogen species is required for the activation of the AMP-activated protein kinase by statin in vivo. J Biol Chem 283, 20186-97
18474592   Curated Info

83

Hou X, et al. (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283, 20015-26
18482975   Curated Info

84

Stokes M (2008) CST Curation Set: 4394; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

85

McNulty DE, Annan RS (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7, 971-80
18212344   Curated Info

86

Boyle JG, et al. (2008) Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. J Biol Chem 283, 11210-7
18303014   Curated Info

87

Qin S, De Vries GW (2008) alpha2 But not alpha1 AMP-activated protein kinase mediates oxidative stress-induced inhibition of retinal pigment epithelium cell phagocytosis of photoreceptor outer segments. J Biol Chem 283, 6744-51
18195011   Curated Info

88

Fu X, et al. (2008) Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS One 3, e2009
18431490   Curated Info

89

Wu Y, et al. (2007) Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. J Biol Chem 282, 9777-88
17255104   Curated Info

90

Reihill JA, Ewart MA, Hardie DG, Salt IP (2007) AMP-activated protein kinase mediates VEGF-stimulated endothelial NO production. Biochem Biophys Res Commun 354, 1084-8
17276402   Curated Info

91

Guo D, Chien S, Shyy JY (2007) Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ Res 100, 564-71
17272808   Curated Info

92

Tosca L, Chabrolle C, Uzbekova S, Dupont J (2007) Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5' monophosphate-activated protein kinase (AMPK). Biol Reprod 76, 368-78
17123942   Curated Info

93

Liang J, et al. (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9, 218-24
17237771   Curated Info

94

Høyer-Hansen M, et al. (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25, 193-205
17244528   Curated Info

95

Sun W, et al. (2006) Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation 114, 2655-62
17116771   Curated Info

96

Kim SC, et al. (2006) A clean, more efficient method for in-solution digestion of protein mixtures without detergent or urea. J Proteome Res 5, 3446-52
17137347   Curated Info

97

Kuhl JE, et al. (2006) Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. Am J Physiol Endocrinol Metab 290, E1296-303
16434556   Curated Info

98

Xie Z, et al. (2006) Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J Biol Chem 281, 6366-75
16407220   Curated Info

99

Schulz E, Anter E, Zou MH, Keaney JF (2005) Estradiol-mediated endothelial nitric oxide synthase association with heat shock protein 90 requires adenosine monophosphate-dependent protein kinase. Circulation 111, 3473-80
15967841   Curated Info

100

Roepstorff C, et al. (2005) Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab 288, E133-42
15383373   Curated Info

101

Zang M, et al. (2004) AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem 279, 47898-905
15371448   Curated Info

102

Drew BG, et al. (2004) High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proc Natl Acad Sci U S A 101, 6999-7004
15107497   Curated Info

103

Browne GJ, Proud CG (2004) A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol 24, 2986-97
15024086   Curated Info

104

Shaw RJ, et al. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101, 3329-35
14985505   Curated Info

105

Chen ZP, et al. (2000) AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 279, E1202-6
11052978   Curated Info

106

MS This site is one of 509 sites observed by D. Stover et al using MS/FTMS of peptides from lysates of A431 cells grown either in vitro or as xenografts in BALB/c nu/nu mice. These sites were previously unpublished until now (July 27 2006). 66 sites were previously published in: Stover DR, et al. Differential phosphoprofiles of EGF and EGFR kinase inhibitor-treated human tumor cells and mouse xenografts Clin Proteomics 2004 Mar 01; 1(1): 69-80.
Curated Info