Ser428
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.4
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser428  -  ATR (human)

Site Information
SSNSDGIsPKRRRLs   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 456320

In vivo Characterization
Methods used to characterize site in vivo:
flow cytometry ( 13 , 16 ) , immunoassay ( 2 , 9 ) , immunoprecipitation ( 3 , 13 , 15 , 16 , 20 ) , mass spectrometry ( 3 , 12 , 20 , 21 , 23 , 24 ) , modification-specific antibody ( 3 ) , mutation of modification site ( 3 , 13 , 15 ) , phospho-antibody ( 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 13 , 14 , 15 , 16 , 18 , 19 , 20 , 22 , 25 ) , western blotting ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 10 , 11 , 13 , 14 , 15 , 16 , 18 , 19 , 20 , 22 )
Disease tissue studied:
bone cancer ( 3 , 9 ) , brain cancer ( 13 ) , glioblastoma ( 13 ) , glioblastoma multiforme ( 13 ) , glioma ( 13 ) , breast cancer ( 3 , 10 , 22 , 25 ) , HER2 positive breast cancer ( 12 ) , luminal A breast cancer ( 12 ) , luminal B breast cancer ( 12 ) , breast cancer, triple negative ( 3 , 12 ) , colorectal cancer ( 4 ) , colorectal carcinoma ( 4 ) , liver cancer ( 5 ) , hepatocellular carcinoma ( 5 ) , lung cancer ( 15 ) , non-small cell lung cancer ( 15 ) , non-small cell lung adenocarcinoma ( 15 ) , prostate cancer ( 1 , 14 , 18 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
CASP2 (human) ( 8 ) , CRYAB (human) ( 5 ) , FBXO44 (human) ( 10 ) , iNOS (human) ( 7 ) , POLK (human) ( 13 ) , SAMHD1 (human) ( 9 ) , SETD2 (human) ( 2 )
Kinases, in vitro:
CDK1 (human) ( 15 )
Treatments:
arsenic ( 6 ) , CCT007093 ( 18 ) , galiellalactone ( 14 ) , hydroxyurea ( 8 ) , ionizing_radiation ( 18 , 22 ) , okadaic_acid ( 22 ) , oxaliplatin ( 4 ) , rabusertib ( 2 ) , THIF ( 25 ) , TMZ removal ( 13 ) , UV ( 5 , 15 ) , VE822 ( 2 ) , virus infection ( 7 )

Downstream Regulation
Effects of modification on ATR:
activity, induced ( 3 ) , enzymatic activity, induced ( 5 , 25 ) , intracellular localization ( 16 ) , molecular association, regulation ( 15 ) , phosphorylation ( 5 ) , ubiquitination ( 3 )
Effects of modification on biological processes:
apoptosis, induced ( 5 ) , cell cycle regulation ( 9 , 16 ) , cell growth, altered ( 25 ) , cell growth, induced ( 16 ) , DNA repair, induced ( 3 , 8 ) , DNA repair, inhibited ( 16 ) , transcription, altered ( 5 )
Induce interaction with:
BID (human) ( 15 ) , PIN1 (human) ( 15 )

Disease / Diagnostics Relevance
Relevant diseases:
colorectal carcinoma ( 4 )

References 

1

Chao Y, et al. (2024) Synthetic lethal combination of CHK1 and WEE1 inhibition for treatment of castration-resistant prostate cancer. Oncogene
38273024   Curated Info

2

Liu XD, et al. (2023) SETD2 Loss and ATR Inhibition Synergize to Promote cGAS Signaling and Immunotherapy Response in Renal Cell Carcinoma. Clin Cancer Res 29, 4002-4015
37527013   Curated Info

3

Liu W, et al. (2023) RNF126-Mediated MRE11 Ubiquitination Activates the DNA Damage Response and Confers Resistance of Triple-Negative Breast Cancer to Radiotherapy. Adv Sci (Weinh) 10, e2203884
36563124   Curated Info

4

Hsieh CC, et al. (2022) CHK2 activation contributes to the development of oxaliplatin resistance in colorectal cancer. Br J Cancer
35999268   Curated Info

5

Xiao Y, et al. (2022) MAB21L1 promotes survival of lens epithelial cells through control of αB-crystallin and ATR/CHK1/p53 pathway. Aging (Albany NY) 14, 6128-6148
35951367   Curated Info

6

Nail AN, et al. (2022) Chronic arsenic exposure suppresses ATM pathway activation in human keratinocytes. Toxicol Appl Pharmacol 446, 116042
35513056   Curated Info

7

Wang F, et al. (2022) Cytoplasmic PARP1 links the genome instability to the inhibition of antiviral immunity through PARylating cGAS. Mol Cell
35460603   Curated Info

8

Boice AG, et al. (2021) Caspase-2 regulates S-phase cell cycle events to protect from DNA damage accumulation independent of apoptosis. Oncogene
34718349   Curated Info

9

Park K, et al. (2021) Aicardi-Goutières syndrome-associated gene SAMHD1 preserves genome integrity by preventing R-loop formation at transcription-replication conflict regions. PLoS Genet 17, e1009523
33857133   Curated Info

10

Shen JZ, et al. (2021) FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell 184, 352-369.e23
33357448   Curated Info

11

Hamperl S, et al. (2017) Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell 170, 774-786.e19
28802045   Curated Info

12

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

13

Peng C, et al. (2016) The Error-Prone DNA Polymerase κ Promotes Temozolomide Resistance in Glioblastoma through Rad17-Dependent Activation of ATR-Chk1 Signaling. Cancer Res 76, 2340-53
26960975   Curated Info

14

García V, et al. (2016) Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells. Oncotarget 7, 4490-506
26683224   Curated Info

15

Hilton BA, et al. (2015) ATR Plays a Direct Antiapoptotic Role at Mitochondria, which Is Regulated by Prolyl Isomerase Pin1. Mol Cell 60, 35-46
26387736   Curated Info

16

Koganti S, et al. (2014) STAT3 interrupts ATR-Chk1 signaling to allow oncovirus-mediated cell proliferation. Proc Natl Acad Sci U S A 111, 4946-51
24639502   Curated Info

17

Yang X, et al. (2013) Histone acetyltransferase 1 promotes homologous recombination in DNA repair by facilitating histone turnover. J Biol Chem 288, 18271-82
23653357   Curated Info

18

Song JY, et al. (2013) Wip1 suppresses apoptotic cell death through direct dephosphorylation of BAX in response to γ-radiation. Cell Death Dis 4, e744
23907458   Curated Info

19

Lossaint G, et al. (2011) Chk1 is dispensable for G2 arrest in response to sustained DNA damage when the ATM/p53/p21 pathway is functional. Oncogene 30, 4261-74
21532626   Curated Info

20

Nam EA, et al. (2011) Thr-1989 Phosphorylation Is a Marker of Active Ataxia Telangiectasia-mutated and Rad3-related (ATR) Kinase. J Biol Chem 286, 28707-14
21705319   Curated Info

21

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

22

Yan Y, et al. (2010) Protein phosphatase 2A has an essential role in the activation of gamma-irradiation-induced G2/M checkpoint response. Oncogene 29, 4317-29
20498628   Curated Info

23

Possemato A (2008) CST Curation Set: 5689; Year: 2008; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

24

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

25

Vauzour D, et al. (2007) Inhibition of cellular proliferation by the genistein metabolite 5,7,3',4'-tetrahydroxyisoflavone is mediated by DNA damage and activation of the ATR signalling pathway. Arch Biochem Biophys 468, 159-66
17976513   Curated Info