Ser792
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.8
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser792  -  Raptor (mouse)

Site Information
DKMRRVSsYSALNSL   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 2314600

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 5 ) , mass spectrometry (in vitro) ( 5 ) , mutation of modification site ( 5 ) , phospho-antibody ( 2 , 3 , 5 , 7 , 8 , 9 , 10 , 11 ) , western blotting ( 2 , 3 , 5 , 7 , 9 , 10 , 11 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 5 ) , 'neuron, cortical' ( 7 ) , 293 (epithelial) ( 8 ) , beta-pancreas [INSR (mouse), transgenic] ( 10 ) , heart ( 3 ) , HEK293T (epithelial) ( 5 ) , MEF (fibroblast) ( 8 ) , MEF (fibroblast) [LKB1 (mouse), transgenic] ( 11 ) , MEF (fibroblast) [NuaK1 (mouse), transgenic] ( 11 ) , myoblast [AMPKA1 (mouse), homozygous knockout] ( 9 ) , myoblast [AMPKA2 (mouse), homozygous knockout] ( 9 ) , osteoblast-calvarium ( 2 )

Upstream Regulation
Regulatory protein:
AMPKA1 (mouse) ( 9 , 11 ) , AMPKA2 (mouse) ( 9 , 11 ) , GLUT1 (mouse) ( 2 ) , LKB1 (mouse) ( 11 ) , PIKFYVE (mouse) ( 5 )
Treatments:
2-deoxyglucose ( 10 ) , A-769662 ( 9 , 11 ) , acadesine ( 5 , 7 , 8 , 9 , 10 , 11 ) , doxycycline ( 3 ) , EDTA ( 11 ) , exercise ( 3 ) , glucose ( 10 ) , insulin ( 5 ) , metformin ( 9 )

Downstream Regulation
Effects of modification on Raptor:
molecular association, regulation ( 12 )
Effects of modification on biological processes:
cell cycle regulation ( 12 )
Induce interaction with:
14-3-3 gamma (mouse) ( 12 ) , 14-3-3 zeta (mouse) ( 12 )

References 

1

Ma L, et al. (2015) HDAC5-mTORC1 Interaction in Differential Regulation of Ghrelin and Nucleobindin 2 (NUCB2)/Nesfatin-1. Mol Endocrinol 29, 1571-80
26357899   Curated Info

2

Wei J, et al. (2015) Glucose Uptake and Runx2 Synergize to Orchestrate Osteoblast Differentiation and Bone Formation. Cell 161, 1576-91
26091038   Curated Info

3

Sturgeon K, et al. (2015) Moderate-intensity treadmill exercise training decreases murine cardiomyocyte cross-sectional area. Physiol Rep 3
25991723   Curated Info

4

Frey JW, Jacobs BL, Goodman CA, Hornberger TA (2014) A role for Raptor phosphorylation in the mechanical activation of mTOR signaling. Cell Signal 26, 313-22
24239769   Curated Info

5

Liu Y, et al. (2013) Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle. Biochem J 455, 195-206
23905686   Curated Info

6

Mihaylova MM, et al. (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607-21
21565617   Curated Info

7

Williams T, et al. (2011) AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress. Proc Natl Acad Sci U S A 108, 5849-54
21436046   Curated Info

8

Egan DF, et al. (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-61
21205641   Curated Info

9

Lantier L, et al. (2010) Coordinated maintenance of muscle cell size control by AMP-activated protein kinase. FASEB J 24, 3555-61
20460585   Curated Info

10

Bartolomé A, Guillén C, Benito M (2010) Role of the TSC1-TSC2 complex in the integration of insulin and glucose signaling involved in pancreatic beta-cell proliferation. Endocrinology 151, 3084-94
20427478   Curated Info

11

Zagórska A, et al. (2010) New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci Signal 3, ra25
20354225   Curated Info

12

Gwinn DM, et al. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214-26
18439900   Curated Info