Ser66
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser66  -  CDK18 (mouse)

Site Information
RQNQRRFsMEDLNKR   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 2192678

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 7 ) , mass spectrometry ( 2 , 3 , 4 , 5 , 6 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 ) , mutation of modification site ( 7 ) , phospho-antibody ( 7 ) , western blotting ( 7 )
Disease tissue studied:
melanoma skin cancer ( 21 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 2 , 4 , 9 ) , 'fat, brown' ( 14 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 19 ) , 32Dcl3 (myeloid) ( 19 ) , brain ( 14 , 16 ) , COS7 (fibroblast) ( 7 ) , heart ( 10 , 14 ) , HEK293T (epithelial) ( 7 ) , HeLa (cervical) ( 7 ) , kidney ( 14 ) , liver ( 8 , 17 ) , lung ( 14 ) , macrophage-bone marrow ( 15 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 15 ) , macrophage-peritoneum ( 12 ) , MC3T3-E1 (preosteoblast) ( 3 ) , MEF (fibroblast) ( 11 , 13 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 11 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 11 ) , mpkCCD (renal) ( 18 ) , pancreas ( 14 ) , RAW 264.7 (macrophage) ( 5 ) , RAW 267.4 (macrophage) ( 20 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 21 ) , spleen ( 14 ) , stromal ( 6 )

Upstream Regulation
Putative in vivo kinases:
PKACA (mouse) ( 7 )
Kinases, in vitro:
PKACA (mouse) ( 7 )
Treatments:
NKH_477 ( 7 ) , PTH(1-34) ( 3 )

References 

1

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

2

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

3

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

4

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

5

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Matsuda S, et al. (2014) PCTAIRE kinase 3/cyclin-dependent kinase 18 is activated through association with cyclin A and/or phosphorylation by protein kinase A. J Biol Chem 289, 18387-400
24831015   Curated Info

8

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

9

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

10

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

11

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

12

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

13

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

14

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

15

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

16

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

17

Possemato A (2010) CST Curation Set: 9736; Year: 2010; Biosample/Treatment: tissue, liver/AICAR; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

18

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

19

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

20

Trost M, et al. (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30, 143-54
19144319   Curated Info

21

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info