Ser40
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus®
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser40  -  MARK2 (human)

Site Information
NMIRGRNsAtsADEQ   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 2192732

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 9 , 10 , 11 , 12 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 )
Disease tissue studied:
breast cancer ( 3 , 10 , 11 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, surrounding tissue ( 2 ) , breast cancer, triple negative ( 2 ) , colorectal cancer ( 24 ) , colorectal carcinoma ( 24 ) , lung cancer ( 6 , 11 ) , non-small cell lung cancer ( 11 ) , non-small cell lung adenocarcinoma ( 6 )
Relevant cell line - cell type - tissue:
293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 18 ) , breast ( 2 ) , BT-474 (breast cell) ( 3 ) , Calu 6 (pulmonary) ( 11 ) , Flp-In T-Rex-293 (epithelial) ( 12 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 12 ) , H2009 (pulmonary) ( 11 ) , H2887 (pulmonary) ( 11 ) , HCC1937 (breast cell) ( 11 ) , HCC827 (pulmonary) ( 11 ) , HCT116 (intestinal) ( 24 ) , HeLa (cervical) ( 1 , 4 , 9 , 14 , 16 , 17 , 21 , 23 ) , HeLa S3 (cervical) ( 22 ) , HeLa_Meta (cervical) ( 19 ) , HeLa_Pro (cervical) ( 19 ) , HeLa_Telo (cervical) ( 19 ) , HUES-9 ('stem, embryonic') ( 15 ) , Jurkat (T lymphocyte) ( 7 , 24 ) , K562 (erythroid) ( 9 ) , LCLC-103H (pulmonary) ( 11 ) , lung ( 6 ) , MCF-7 (breast cell) ( 3 , 11 ) , MDA-MB-435S (breast cell) ( 20 ) , MV4-11 (macrophage) ( 20 ) , NCI-H157 (pulmonary) ( 11 ) , NCI-H1648 (pulmonary) ( 11 ) , NCI-H1666 (pulmonary) ( 11 ) , SH-SY5Y (neural crest) ( 5 ) , SKBr3 (breast cell) ( 10 )

Upstream Regulation
Treatments:
angiotensin_2 ( 18 ) , lapatinib ( 10 ) , SII_angiotensin_2 ( 18 )

References 

1

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

4

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

5

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

6

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

7

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

8

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

9

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

10

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

11

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

12

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

13

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

14

Nishioka T, Nakayama M, Amano M, Kaibuchi K (2012) Proteomic screening for Rho-kinase substrates by combining kinase and phosphatase inhibitors with 14-3-3ΞΆ affinity chromatography. Cell Struct Funct 37, 39-48
22251793   Curated Info

15

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

16

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

17

Hegemann B, et al. (2011) Systematic phosphorylation analysis of human mitotic protein complexes. Sci Signal 4, rs12
22067460   Curated Info

18

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

19

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

20

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

21

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

22

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

23

Cantin GT, et al. (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7, 1346-51
18220336   Curated Info

24

Wissing J, et al. (2007) Proteomics analysis of protein kinases by target class-selective prefractionation and tandem mass spectrometry. Mol Cell Proteomics 6, 537-47
17192257   Curated Info