Ser434
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.0.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser434  -  Fer (human)

Site Information
sIAGIIRsPKSALGS   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 2192594

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 3 , 5 , 7 , 8 , 9 , 10 , 11 , 12 , 13 )
Disease tissue studied:
cervical cancer ( 10 ) , cervical adenocarcinoma ( 10 ) , colorectal cancer ( 13 ) , colorectal carcinoma ( 13 )
Relevant cell line - cell type - tissue:
A498 (renal) ( 9 ) , HCT116 (intestinal) ( 11 , 13 ) , HeLa (cervical) ( 1 , 5 , 7 ) , HeLa S3 (cervical) ( 10 , 12 ) , HeLa_Meta (cervical) ( 8 ) , HeLa_Pro (cervical) ( 8 ) , HeLa_Telo (cervical) ( 8 ) , Jurkat (T lymphocyte) ( 3 ) , K562 (erythroid) ( 5 ) , MDA-MB-435S (breast cell) ( 11 ) , MV4-11 (macrophage) ( 11 )

Upstream Regulation
Treatments:
MG132_withdrawal ( 8 ) , nocodazole ( 12 ) , thymidine ( 12 )

References 

1

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

2

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

3

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

4

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

5

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

6

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

7

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

8

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

9

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

10

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

11

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

12

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

13

Wissing J, et al. (2007) Proteomics analysis of protein kinases by target class-selective prefractionation and tandem mass spectrometry. Mol Cell Proteomics 6, 537-47
17192257   Curated Info