Thr183
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.8
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr183  -  AMPKA1 (mouse)

Site Information
sDGEFLRtsCGsPNY   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448786

In vivo Characterization
Methods used to characterize site in vivo:
electrophoretic mobility shift ( 93 ) , immunoprecipitation ( 5 , 16 , 56 ) , mass spectrometry ( 9 , 13 , 17 , 19 , 24 , 43 , 49 , 50 , 51 , 52 , 53 ) , mass spectrometry (in vitro) ( 16 ) , microscopy-colocalization with upstream kinase ( 70 ) , mutation of modification site ( 1 , 16 , 70 , 74 , 76 ) , phospho-antibody ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 10 , 11 , 12 , 16 , 22 , 23 , 26 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 44 , 45 , 46 , 48 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 87 , 88 , 89 , 90 , 91 , 92 , 93 ) , western blotting ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 10 , 11 , 12 , 16 , 22 , 23 , 26 , 28 , 29 , 30 , 31 , 32 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 44 , 45 , 46 , 48 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 62 , 63 , 64 , 65 , 66 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 83 , 84 , 85 , 87 , 88 , 89 , 90 )
Disease tissue studied:
Alzheimer's disease ( 4 ) , brain cancer ( 64 ) , astrocytoma ( 64 ) , breast cancer ( 55 ) , cervical cancer ( 59 , 73 ) , cervical adenocarcinoma ( 59 , 73 ) , kidney cancer ( 37 ) , liver cancer ( 5 ) , lung cancer ( 59 , 73 ) , pancreatic cancer ( 1 , 35 , 54 , 71 , 76 ) , pancreatic carcinoma ( 1 , 35 , 54 , 71 , 76 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 9 ) , 'brain, hypothalamus' ( 87 ) , 'fat, brown'-'fat, brown' ( 32 ) , 'kidney, tubule' [TSC2 (mouse), homozygous knockout] ( 37 ) , 'muscle, skeletal' ( 7 , 16 , 45 , 62 , 68 , 78 , 81 , 91 , 92 ) , 'neuron, cortical' ( 3 , 30 ) , 'neuron, cortical'-brain ( 70 ) , 293 (epithelial) ( 33 , 58 , 79 , 83 ) , 3T3 (fibroblast) [SHP-2 (mouse), homozygous knockout] ( 82 , 90 , 93 ) , 3T3 (fibroblast) [TSC2 (mouse), transfection] ( 58 ) , 3T3 (fibroblast) ( 66 ) , 3T3-L1 (fibroblast) ( 41 , 65 , 69 , 74 ) , 4T1 (breast cell) ( 55 ) , 786-O (renal) ( 37 ) , A549 (pulmonary) ( 59 , 73 ) , adipose tissue ( 41 ) , aorta ( 59 , 75 , 84 ) , astrocyte ( 64 ) , BAEC (endothelial) ( 59 , 73 ) , beta-pancreas ( 1 ) , beta-pancreas [INSR (mouse), transgenic] ( 42 ) , brain ( 19 , 43 , 50 , 53 , 64 ) , C2C12 (myoblast) ( 11 , 22 , 69 , 72 ) , COS (fibroblast) ( 76 ) , CT-2A (astrocyte) ( 64 ) , embryo ( 19 ) , FL5.12 (lymphoid) [Bcl-xL (human), transfection] ( 36 ) , FL5.12 (lymphoid) ( 36 ) , heart ( 2 , 10 , 52 , 63 , 77 , 81 ) , heart [AMPKA2 (mouse), homozygous knockout] ( 39 ) , HEK293T (epithelial) ( 16 ) , HeLa (cervical) ( 12 , 23 ) , HeLa S3 (cervical) ( 59 , 73 ) , Hepa-1 (hepatic) ( 5 ) , hepatocyte ( 5 , 34 ) , hepatocyte-liver ( 31 , 57 ) , HK2 (epithelial) ( 37 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 13 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 13 ) , HL-1 (myocyte) ( 13 ) , HUVEC (endothelial) ( 59 ) , INS-1 (pancreatic) ( 76 ) , keratinocyte-skin [IGF1 (mouse)] ( 83 ) , kidney ( 67 ) , L6 (myoblast) ( 7 , 69 ) , liver ( 17 , 19 , 24 , 49 , 51 , 60 , 87 , 88 ) , liver [LKB1 (mouse), homozygous knockout] ( 85 ) , macrophage-bone marrow ( 4 , 28 ) , MEF (fibroblast) ( 12 , 33 , 38 , 44 , 58 , 74 , 76 , 77 , 79 ) , MEF (fibroblast) [homozygous knockout] ( 29 ) , MEF (fibroblast) [LKB1 (mouse), transgenic] ( 48 ) , MEF (fibroblast) [LKB1 (mouse)] ( 89 ) , MEF (fibroblast) [NuaK1 (mouse), transgenic] ( 48 ) , MEF (fibroblast) [TSC2 (mouse), heterozygous knockout] ( 37 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 46 ) , MEF (fibroblast) [ULK1 (mouse), homozygous knockout] ( 26 ) , MIN6 (pancreatic) ( 1 , 35 , 54 , 71 ) , MMDD1 (renal) ( 56 , 67 ) , muscle [LKB1 (mouse), homozygous knockout] ( 85 ) , myoblast ( 80 ) , myoblast [AMPKA1 (mouse), homozygous knockout] ( 40 ) , myoblast [AMPKA2 (mouse), homozygous knockout] ( 40 ) , myocardium ( 75 ) , myocyte-heart ( 77 ) , oocyte ( 6 ) , placenta ( 8 ) , ST2 (stromal) ( 79 ) , T lymphocyte ( 36 ) , thoracic aorta ( 73 ) , vascular smooth muscle cell ('muscle, smooth') ( 73 )

Upstream Regulation
Regulatory protein:
ADRB1 (mouse) ( 32 ) , Akt1 (human) ( 84 ) , Akt2 (mouse) ( 78 ) , AMPKA1 (human) ( 37 , 84 ) , AMPKA1 (mouse) ( 40 , 44 , 65 ) , AMPKA2 (mouse) ( 40 ) , ATM (mouse) ( 22 ) , CAMKK2 (mouse) ( 76 ) , CK1E (human) ( 66 ) , CPT2 (mouse) ( 2 ) , eNOS (mouse) ( 59 ) , GK (mouse) ( 35 ) , GRN (mouse) ( 3 ) , HGK (mouse) ( 77 ) , LKB1 (human) ( 65 ) , LKB1 (mouse) ( 6 , 48 , 62 , 76 , 81 , 85 ) , PDK1 (human) ( 84 ) , PIKFYVE (mouse) ( 16 ) , PKCZ (mouse) ( 59 ) , Plectin-1 (mouse) ( 80 ) , PPP1R3C (human) ( 35 ) , PPP1R3D (mouse) ( 35 ) , PPP1R3E (mouse) ( 35 ) , PPP2CA (mouse) ( 73 ) , SCD (mouse) ( 88 ) , SIRT1 (human) ( 44 , 60 ) , SIRT6 (human) ( 34 ) , SPHK1 (human) ( 31 ) , TAK1 (mouse) ( 77 ) , TREM2 (mouse) ( 4 ) , ULK1 (human) ( 26 )
Putative in vivo kinases:
CAMKK2 (mouse) ( 76 ) , LKB1 (mouse) ( 89 )
Putative upstream phosphatases:
PPP1CA (mouse) ( 35 ) , PPP1CB (mouse) ( 35 )
Phosphatases, in vitro:
PPP1CA (human) ( 35 ) , PPP2CA (human) ( 35 , 86 )
Treatments:
2-deoxyglucose ( 35 , 38 , 64 , 76 , 79 , 83 ) , 8-Rp-cAMP ( 5 ) , A-769662 ( 40 , 48 ) , acadesine ( 1 , 16 , 28 , 30 , 33 , 37 , 38 , 40 , 47 , 48 , 54 , 64 , 65 , 66 , 69 , 72 , 74 , 77 , 79 , 84 , 87 , 89 ) , adiponectin ( 55 , 57 , 69 , 91 ) , adriamycin ( 38 ) , Akt-I-1 ( 32 ) , AMDE-1 ( 12 ) , amino_acid_starvation ( 64 ) , angiotensin_2 ( 39 ) , anoxia ( 81 ) , antimycin_A ( 56 , 67 ) , atorvastatin ( 75 ) , C75 ( 87 ) , caffeine ( 68 ) , cAMP_analog ( 5 , 90 ) , camptothecin ( 38 ) , colforsin ( 47 , 57 , 76 , 90 ) , compound_C ( 64 , 79 ) , dantrolene ( 68 ) , dinitrophenol ( 92 ) , DMSO ( 93 ) , dorsomorphin ( 1 ) , doxycycline ( 10 ) , EDTA ( 48 ) , epoprostenol ( 83 ) , exercise ( 10 , 62 ) , fasting ( 87 ) , FGF21 ( 41 ) , fluid_shear_stress ( 44 ) , free_fatty_acids ( 34 ) , fructose ( 35 ) , galactose ( 35 ) , glucose ( 35 , 37 , 47 , 54 , 58 , 64 ) , glucose_starvation ( 15 , 47 , 64 , 69 , 74 , 79 ) , H-89 ( 5 , 7 , 47 ) , H2O2 ( 38 , 89 , 93 ) , high_glucose ( 1 , 31 ) , hypotonic_buffer ( 56 ) , hypoxia ( 11 ) , IBMX ( 76 ) , IGF-1 ( 83 ) , IL-2 ( 36 ) , IL-2_withdrawal ( 36 ) , insulin ( 16 , 45 , 65 , 90 ) , ionizing_radiation ( 38 ) , ionomycin ( 76 ) , ischemia ( 77 , 81 ) , ischemia/reperfusion ( 63 ) , isoproterenol ( 47 , 90 ) , KN-62 ( 45 ) , KN-93 ( 68 ) , leptin ( 69 ) , leucine ( 72 ) , levothyroxine sodium ( 39 ) , LPS ( 28 ) , LY294002 ( 54 ) , meal feeding ( 31 , 85 ) , medium change ( 79 ) , metformin ( 1 , 5 , 14 , 40 , 63 , 65 , 66 , 71 , 77 , 84 , 85 , 92 ) , methyl_succinate ( 71 ) , MG132 ( 66 ) , MNNG ( 38 ) , MSH ( 7 ) , muscle contraction ( 45 , 78 ) , nerve_damage ( 32 ) , nicotine ( 65 ) , obesity-inducing diet ( 57 ) , oleic_acid ( 73 ) , oligomycin ( 77 ) , ONOO(-) ( 65 ) , palmitate ( 28 , 73 ) , PD98059 ( 93 ) , peptide inhibitor ( 45 ) , PGRN ( 3 ) , phenformin ( 38 ) , phentolamine ( 32 ) , PKI ( 47 ) , propranolol ( 32 , 90 ) , rapamycin ( 37 , 46 , 79 ) , rosiglitazone ( 34 , 54 , 83 , 92 ) , salicylate ( 5 ) , simvastatin ( 59 ) , siRNA ( 59 ) , sorbitol ( 89 , 92 ) , sphingomyelinase ( 31 ) , starvation_medium ( 26 ) , STO-609 ( 56 , 68 ) , suramin sodium ( 93 ) , tempol ( 59 ) , thiamet-G ( 15 ) , troglitazone ( 83 ) , UV ( 38 ) , Wnt3a ( 79 ) , wortmannin ( 79 )

Downstream Regulation
Effects of modification on AMPKA1:
enzymatic activity, induced ( 28 , 56 , 62 , 89 , 91 , 92 , 93 ) , phosphorylation ( 70 ) , protein degradation ( 66 )
Effects of modification on biological processes:
autophagy, induced ( 28 ) , cell growth, altered ( 62 ) , cytoskeletal reorganization ( 70 ) , transcription, altered ( 66 )
Induce interaction with:
AMPKA1 (mouse) ( 70 )

Disease / Diagnostics Relevance
Relevant diseases:
hypertrophic cardiomyopathy ( 39 )

References 

1

Iwaoka R, Kataoka K (2018) Glucose regulates MafA transcription factor abundance and insulin gene expression by inhibiting AMP-activated protein kinase in pancreatic β-cells. J Biol Chem
29348175   Curated Info

2

Pereyra AS, et al. (2017) Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy. J Biol Chem 292, 18443-18456
28916721   Curated Info

3

Chang MC, et al. (2017) Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J Exp Med 214, 2611-2628
28778989   Curated Info

4

Ulland TK, et al. (2017) TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease. Cell 170, 649-663.e13
28802038   Curated Info

5

He L, et al. (2016) Activation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production. J Biol Chem 291, 10562-70
27002150   Curated Info

6

Jiang ZZ, et al. (2016) LKB1 acts as a critical gatekeeper of ovarian primordial follicle pool. Oncotarget 7, 5738-53
26745759   Curated Info

7

Møller CL, et al. (2016) α-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS One 11, e0157027
27467141   Curated Info

8

Aye IL, Rosario FJ, Powell TL, Jansson T (2015) Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth. Proc Natl Acad Sci U S A 112, 12858-63
26417088   Curated Info

9

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

10

Sturgeon K, et al. (2015) Moderate-intensity treadmill exercise training decreases murine cardiomyocyte cross-sectional area. Physiol Rep 3
25991723   Curated Info

11

Yan Y, et al. (2015) Augmented AMPK activity inhibits cell migration by phosphorylating the novel substrate Pdlim5. Nat Commun 6, 6137
25635515   Curated Info

12

Li M, et al. (2015) AMDE-1 is a dual function chemical for autophagy activation and inhibition. PLoS One 10, e0122083
25894744   Curated Info

13

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

14

Cao J, et al. (2014) Low Concentrations of Metformin Suppress Glucose Production in Hepatocytes through AMP-activated Protein Kinase (AMPK). J Biol Chem 289, 20435-20446
24928508   Curated Info

15

Bullen JW, et al. (2014) Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J Biol Chem 289, 10592-606
24563466   Curated Info

16

Liu Y, et al. (2013) Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle. Biochem J 455, 195-206
23905686   Curated Info

17

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

18

Miller RA, et al. (2013) Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256-60
23292513   Curated Info

19

Stokes MP, et al. (2012) PTMScan Direct: Identification and Quantification of Peptides from Critical Signaling Proteins by Immunoaffinity Enrichment Coupled with LC-MS/MS. Mol Cell Proteomics 11, 187-201
22322096   Curated Info

20

Rosario FJ, et al. (2012) Chronic maternal infusion of full-length adiponectin in pregnant mice down-regulates placental amino acid transporter activity and expression and decreases fetal growth. J Physiol 590, 1495-509
22289908   Curated Info

21

Xie J, et al. (2011) cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity. Cell Signal 23, 1927-35
21763421   Curated Info

22

Assaily W, et al. (2011) ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol Cell 44, 491-501
22055193   Curated Info

23

Jin HO, et al. (2011) TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1. Oncogene 30, 3792-801
21460850   Curated Info

24

Guo A (2011) CST Curation Set: 12478; Year: 2011; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

25

Sarkar S, et al. (2011) Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 43, 19-32
21726807   Curated Info

26

Löffler AS, et al. (2011) Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 7, 696-706
21460634   Curated Info

27

Mihaylova MM, et al. (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607-21
21565617   Curated Info

28

Wen H, et al. (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12, 408-15
21478880   Curated Info

29

Tsou P, et al. (2011) A fluorescent reporter of AMPK activity and cellular energy stress. Cell Metab 13, 476-86
21459332   Curated Info

30

Williams T, et al. (2011) AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress. Proc Natl Acad Sci U S A 108, 5849-54
21436046   Curated Info

31

Osawa Y, et al. (2011) Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression. FASEB J 25, 1133-44
21163859   Curated Info

32

Pulinilkunnil T, et al. (2011) Adrenergic regulation of AMP-activated protein kinase in brown adipose tissue in vivo. J Biol Chem 286, 8798-809
21209093   Curated Info

33

Egan DF, et al. (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-61
21205641   Curated Info

34

Yang SJ, et al. (2011) Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats. PLoS One 6, e17057
21373642   Curated Info

35

Garcia-Haro L, et al. (2010) The PP1-R6 protein phosphatase holoenzyme is involved in the glucose-induced dephosphorylation and inactivation of AMP-activated protein kinase, a key regulator of insulin secretion, in MIN6 beta cells. FASEB J 24, 5080-91
20724523   Curated Info

36

Mason EF, et al. (2010) Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-Abl. Cancer Res 70, 8066-76
20876800   Curated Info

37

Habib SL, et al. (2010) Novel mechanism of reducing tumourigenesis: upregulation of the DNA repair enzyme OGG1 by rapamycin-mediated AMPK activation and mTOR inhibition. Eur J Cancer 46, 2806-20
20656472   Curated Info

38

Bungard D, et al. (2010) Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329, 1201-5
20647423   Curated Info

39

Jiang SY, et al. (2010) A distinct AMP-activated protein kinase phosphorylation site characterizes cardiac hypertrophy induced by L-thyroxine and angiotensin II. Clin Exp Pharmacol Physiol 37, 919-25
20497424   Curated Info

40

Lantier L, et al. (2010) Coordinated maintenance of muscle cell size control by AMP-activated protein kinase. FASEB J 24, 3555-61
20460585   Curated Info

41

Chau MD, et al. (2010) Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci U S A 107, 12553-8
20616029   Curated Info

42

Bartolomé A, Guillén C, Benito M (2010) Role of the TSC1-TSC2 complex in the integration of insulin and glucose signaling involved in pancreatic beta-cell proliferation. Endocrinology 151, 3084-94
20427478   Curated Info

43

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

44

Chen Z, et al. (2010) Shear stress, SIRT1, and vascular homeostasis. Proc Natl Acad Sci U S A 107, 10268-73
20479254   Curated Info

45

Witczak CA, et al. (2010) CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle. Am J Physiol Endocrinol Metab 298, E1150-60
20215576   Curated Info

46

Choo AY, et al. (2010) Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 38, 487-99
20513425   Curated Info

47

Djouder N, et al. (2010) PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J 29, 469-81
19942859   Curated Info

48

Zagórska A, et al. (2010) New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci Signal 3, ra25
20354225   Curated Info

49

Zhou J (2009) CST Curation Set: 7426; Year: 2009; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

50

Zhou J (2009) CST Curation Set: 7413; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

51

Zhou J (2009) CST Curation Set: 7425; Year: 2009; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

52

Zhou J (2009) CST Curation Set: 7418; Year: 2009; Biosample/Treatment: tissue, heart/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

53

Zhou J (2009) CST Curation Set: 7414; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

54

Chang TJ, et al. (2009) Serine-385 phosphorylation of inwardly rectifying K+ channel subunit (Kir6.2) by AMP-dependent protein kinase plays a key role in rosiglitazone-induced closure of the K(ATP) channel and insulin secretion in rats. Diabetologia 52, 1112-21
19357830   Curated Info

55

Kim KY, et al. (2009) Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res 69, 4018-26
19366811   Curated Info

56

Cook N, et al. (2009) Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells. Am J Physiol Renal Physiol 296, F801-9
19176702   Curated Info

57

Qi L, et al. (2009) Adipocyte CREB promotes insulin resistance in obesity. Cell Metab 9, 277-86
19254572   Curated Info

58

Short JD, et al. (2008) AMP-activated protein kinase signaling results in cytoplasmic sequestration of p27. Cancer Res 68, 6496-506
18701472   Curated Info

59

Choi HC, et al. (2008) Reactive nitrogen species is required for the activation of the AMP-activated protein kinase by statin in vivo. J Biol Chem 283, 20186-97
18474592   Curated Info

60

Hou X, et al. (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283, 20015-26
18482975   Curated Info

61

Gwinn DM, et al. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214-26
18439900   Curated Info

62

McGee SL, Mustard KJ, Hardie DG, Baar K (2008) Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice. J Physiol 586, 1731-41
18202101   Curated Info

63

Calvert JW, et al. (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57, 696-705
18083782   Curated Info

64

Mukherjee P, et al. (2008) Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain. Mol Cancer 7, 37
18474106   Curated Info

65

An Z, et al. (2007) Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: a role for oxidant stress. J Biol Chem 282, 26793-801
17635921   Curated Info

66

Um JH, et al. (2007) Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem 282, 20794-8
17525164   Curated Info

67

Fraser SA, et al. (2007) Regulation of the renal-specific Na+-K+-2Cl- co-transporter NKCC2 by AMP-activated protein kinase (AMPK). Biochem J 405, 85-93
17341212   Curated Info

68

Jensen TE, et al. (2007) Caffeine-induced Ca(2+) release increases AMPK-dependent glucose uptake in rodent soleus muscle. Am J Physiol Endocrinol Metab 293, E286-92
17405829   Curated Info

69

Suzuki A, et al. (2007) Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the alpha2 form of AMP-activated protein kinase. Mol Cell Biol 27, 4317-27
17420279   Curated Info

70

Barnes AP, et al. (2007) LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129, 549-63
17482548   Curated Info

71

Hinke SA, et al. (2007) Methyl succinate antagonises biguanide-induced AMPK-activation and death of pancreatic beta-cells through restoration of mitochondrial electron transfer. Br J Pharmacol 150, 1031-43
17339833   Curated Info

72

Du M, Shen QW, Zhu MJ, Ford SP (2007) Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase. J Anim Sci 85, 919-27
17178807   Curated Info

73

Wu Y, et al. (2007) Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. J Biol Chem 282, 9777-88
17255104   Curated Info

74

Liang J, et al. (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9, 218-24
17237771   Curated Info

75

Sun W, et al. (2006) Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation 114, 2655-62
17116771   Curated Info

76

Hurley RL, et al. (2006) Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J Biol Chem 281, 36662-72
17023420   Curated Info

77

Xie M, et al. (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci U S A 103, 17378-83
17085580   Curated Info

78

Sakamoto K, et al. (2006) Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle. Am J Physiol Endocrinol Metab 291, E1031-7
16803855   Curated Info

79

Inoki K, et al. (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955-68
16959574   Curated Info

80

Gregor M, et al. (2006) Plectin scaffolds recruit energy-controlling AMP-activated protein kinase (AMPK) in differentiated myofibres. J Cell Sci 119, 1864-75
16608880   Curated Info

81

Sakamoto K, et al. (2006) Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1. Am J Physiol Endocrinol Metab 290, E780-8
16332922   Curated Info

82

Watt MJ, et al. (2006) Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab 290, E500-8
16188906   Curated Info

83

He G, Sung YM, Digiovanni J, Fischer SM (2006) Thiazolidinediones inhibit insulin-like growth factor-i-induced activation of p70S6 kinase and suppress insulin-like growth factor-I tumor-promoting activity. Cancer Res 66, 1873-8
16452250   Curated Info

84

Davis BJ, Xie Z, Viollet B, Zou MH (2006) Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes 55, 496-505
16443786   Curated Info

85

Shaw RJ, et al. (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-6
16308421   Curated Info

86

Hawley SA, et al. (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2, 9-19
16054095   Curated Info

87

Kim EK, et al. (2004) C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J Biol Chem 279, 19970-6
15028725   Curated Info

88

Dobrzyn P, et al. (2004) Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc Natl Acad Sci U S A 101, 6409-14
15096593   Curated Info

89

Shaw RJ, et al. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101, 3329-35
14985505   Curated Info

90

Yin W, Mu J, Birnbaum MJ (2003) Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis In 3T3-L1 adipocytes. J Biol Chem 278, 43074-80
12941946   Curated Info

91

Tomas E, et al. (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U S A 99, 16309-13
12456889   Curated Info

92

Fryer LG, Parbu-Patel A, Carling D (2002) The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277, 25226-32
11994296   Curated Info

93

Choi SL, et al. (2001) The regulation of AMP-activated protein kinase by H(2)O(2). Biochem Biophys Res Commun 287, 92-7
11549258   Curated Info