|
Powered by Cell Signaling Technology |
Site Information |
---|
RPMRKsFsQPGLRSL SwissProt Entrez-Gene |
Blast this site against: NCBI SwissProt PDB |
Site Group ID: 2103609 |
Associated spectra: 1 CST |
In vivo Characterization | |
---|---|
Methods used to characterize site in vivo: | |
Disease tissue studied: | |
Relevant cell line - cell type - tissue: |
Upstream Regulation | |
---|---|
Regulatory protein: | |
Putative in vivo kinases: | |
Kinases, in vitro: | |
Treatments: |
Downstream Regulation | |
---|---|
Effects of modification on biological processes: |
References | |
---|---|
Lu C, et al. (2024) GPR30 selective agonist G-1 induced insulin resistance in ovariectomized mice on high fat diet and its mechanism. Biochem Biophys Res Commun 716, 150026
38701557 Curated Info |
|
Chen ZY, et al. (2022) Rab2A regulates the progression of nonalcoholic fatty liver disease downstream of AMPK-TBC1D1 axis by stabilizing PPARγ. PLoS Biol 20, e3001522
35061665 Curated Info |
|
Liu Y, et al. (2020) TLR9 and beclin¿¿1 crosstalk regulates muscle AMPK activation in exercise. Nature
32051584 Curated Info |
|
Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261 Curated Info |
|
Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257 Curated Info |
|
Møller CL, et al. (2016) α-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS One 11, e0157027
27467141 Curated Info |
|
Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039 Curated Info |
|
Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660 Curated Info |
|
Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451 Curated Info |
|
Treebak JT, et al. (2014) Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. J Physiol 592, 351-75
24247980 Curated Info |
|
Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750 Curated Info |
|
Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622 Curated Info |
|
Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553 Curated Info |
|
Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704 Curated Info |
|
Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356 Curated Info |
|
Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645 Curated Info |
|
Trinidad JC, et al. (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11, 215-29
22645316 Curated Info |
|
Goswami T, et al. (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain. Proteomics 12, 2185-9
22807455 Curated Info |
|
Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604 Curated Info |
|
Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605 Curated Info |
|
Wang Y, et al. (2011) Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 286, 18190-201
21454597 Curated Info |
|
Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417 Curated Info |
|
Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079 Curated Info |
|
Possemato A (2010) CST Curation Set: 9879; Year: 2010; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) 14-3-3 Binding Motif (4E2) Mouse mAb Cat#: 9606
Curated Info |
|
Possemato A (2010) CST Curation Set: 9883; Year: 2010; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) 14-3-3 Binding Motif Antibody Cat#: 9601
Curated Info |
|
Possemato A (2010) CST Curation Set: 9878; Year: 2010; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) 14-3-3 Binding Motif (4E2) Mouse mAb Cat#: 9606
Curated Info |
|
Possemato A (2010) CST Curation Set: 9882; Year: 2010; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) 14-3-3 Binding Motif Antibody Cat#: 9601
Curated Info |
|
Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495 Curated Info |
|
Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300 Curated Info |
|
Peck GR, et al. (2009) Insulin-stimulated phosphorylation of the Rab GTPase-activating protein TBC1D1 regulates GLUT4 translocation. J Biol Chem 284, 30016-23
19740738 Curated Info |
|
Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140 Curated Info |
|
Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708 Curated Info |
|
Taylor EB, et al. (2008) Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem 283, 9787-96
18276596 Curated Info |
|
Guo A (2007) CST Curation Set: 3496; Year: 2007; Biosample/Treatment: cell line, E1-1796/rapamycin; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y)p[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PDK1 Docking Motif (18A2) Mouse mAb Cat#: 9634, PTMScan(R) Phospho-PDK1 Docking Motif (F/YS*/T*F/Y) Immunoaffinity Beads Cat#: 1992
Curated Info |
|
Guo A (2007) CST Curation Set: 3121; Year: 2007; Biosample/Treatment: tissue, brain/-; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y)p[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PDK1 Docking Motif (18A2) Mouse mAb Cat#: 9634, PTMScan(R) Phospho-PDK1 Docking Motif (F/YS*/T*F/Y) Immunoaffinity Beads Cat#: 1992
Curated Info |