Ser65
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser65  -  4E-BP1 (human)

Site Information
FLMECrNsPVtktPP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447527

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 91 ) , [32P] bio-synthetic labeling ( 90 ) , electrophoretic mobility shift ( 89 , 92 ) , flow cytometry ( 13 ) , immunoassay ( 44 ) , immunoprecipitation ( 5 , 13 , 17 ) , mass spectrometry ( 6 , 9 , 11 , 12 , 13 , 14 , 15 , 19 , 20 , 21 , 22 , 25 , 28 , 29 , 31 , 32 , 33 , 34 , 37 , 38 , 42 , 46 , 47 , 50 , 51 , 52 , 53 , 55 , 56 , 58 , 61 , 62 , 64 , 65 , 68 , 70 , 71 , 73 , 74 , 90 , 93 ) , mutation of modification site ( 7 , 16 , 17 , 40 , 90 , 91 , 92 ) , phospho-antibody ( 3 , 4 , 5 , 7 , 8 , 17 , 23 , 26 , 27 , 36 , 39 , 41 , 44 , 45 , 54 , 57 , 59 , 60 , 63 , 66 , 75 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 ) , phosphopeptide mapping ( 90 , 91 ) , western blotting ( 4 , 5 , 7 , 8 , 17 , 23 , 26 , 27 , 36 , 39 , 41 , 45 , 54 , 57 , 59 , 60 , 63 , 66 , 75 , 77 , 78 , 79 , 80 , 81 , 83 , 84 , 86 , 87 , 88 , 89 , 90 , 91 )
Disease tissue studied:
bone cancer ( 86 ) , brain cancer ( 5 ) , glioblastoma ( 5 ) , glioblastoma multiforme ( 41 ) , glioma ( 5 , 41 ) , breast cancer ( 11 , 21 , 22 , 23 , 33 , 39 , 45 , 59 , 66 , 79 ) , breast ductal carcinoma ( 21 ) , HER2 positive breast cancer ( 9 ) , luminal A breast cancer ( 9 ) , luminal B breast cancer ( 9 ) , breast cancer, surrounding tissue ( 9 ) , breast cancer, triple negative ( 9 , 21 , 23 ) , cervical cancer ( 58 ) , cervical adenocarcinoma ( 58 ) , colorectal cancer ( 87 ) , colorectal carcinoma ( 87 ) , kidney cancer ( 8 ) , leukemia ( 4 , 37 , 54 , 71 , 79 ) , acute myelogenous leukemia ( 37 , 79 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 32 ) , acute megakaryoblastic leukemia (M7) ( 32 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 32 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 32 ) , acute myeloblastic leukemia, without maturation (M1) ( 32 ) , chronic myelogenous leukemia ( 54 , 71 ) , T cell leukemia ( 4 ) , liver cancer ( 77 ) , lung cancer ( 33 , 42 , 45 , 68 ) , non-small cell lung cancer ( 33 , 68 ) , non-small cell lung adenocarcinoma ( 42 ) , lymphoma ( 4 ) , B cell lymphoma ( 32 ) , Hodgkin's lymphoma ( 4 ) , non-Hodgkin's lymphoma ( 32 ) , ovarian cancer ( 21 ) , pancreatic cancer ( 80 ) , pancreatic carcinoma ( 80 ) , multiple myeloma ( 32 ) , melanoma skin cancer ( 15 ) , diabetes mellitus ( 66 ) , type 2 diabetes ( 66 )
Relevant cell line - cell type - tissue:
293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 55 ) , 293 (epithelial) ( 7 , 13 , 17 , 20 , 26 , 36 , 50 , 51 , 52 , 53 , 57 , 83 , 84 , 88 , 89 , 90 , 92 ) , 293E (epithelial) ( 86 ) , 3T3-L1 (fibroblast) ( 77 ) , 786-O (renal) [VHL (human), transfection] ( 12 ) , 786-O (renal) ( 12 ) , A431 (epithelial) ( 93 ) , A549 (pulmonary) ( 28 ) , ACHN (renal) ( 8 ) , AML-193 (monocyte) ( 32 ) , BaF3 ('B lymphocyte, precursor') ( 54 ) , breast ( 9 , 21 ) , BT-20 (breast cell) ( 33 ) , BT-474 (breast cell) ( 45 ) , BT-549 (breast cell) ( 33 ) , BV-173 (myeloid) ( 54 ) , Calu 6 (pulmonary) ( 33 ) , CMK (megakaryoblast) ( 32 ) , CTS (myeloid) ( 32 ) , DOHH2 ('B lymphocyte, precursor') ( 32 ) , E.coli (bacterial) ( 13 ) , fibroblast-embryo ( 60 ) , fibroblast-lung ( 78 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 34 ) , Flp-In T-Rex-293 (epithelial) ( 34 ) , H2009 (pulmonary) ( 33 ) , H2077 (pulmonary) ( 33 ) , H2887 (pulmonary) ( 33 ) , H322M (pulmonary) ( 33 ) , HCC1359 (pulmonary) ( 33 ) , HCC1806 (breast cell) ( 23 ) , HCC1937 (breast cell) ( 33 ) , HCC2279 (pulmonary) ( 33 ) , HCC366 (pulmonary) ( 33 ) , HCC4006 (pulmonary) ( 33 ) , HCC78 (pulmonary) ( 33 ) , HCC827 (pulmonary) ( 33 ) , HCT116 (intestinal) ( 87 ) , HDLM-2 (lymphoid) ( 4 ) , HEK293T (epithelial) ( 14 , 40 , 74 ) , HEL (erythroid) ( 32 ) , HeLa (cervical) ( 6 , 7 , 19 , 31 , 38 , 40 , 47 , 61 , 65 , 70 , 73 , 91 ) , HeLa S3 (cervical) ( 58 ) , HepG2 (hepatic) ( 77 ) , HF (fibroblast) ( 41 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 22 ) , HMLER ('stem, breast cancer') ( 22 ) , HMVEC (endothelial) ( 85 ) , HOP62 (pulmonary) ( 33 ) , hUCB-MSCs ( 3 ) , HUES-7 ('stem, embryonic') ( 62 ) , HUES-9 ('stem, embryonic') ( 46 ) , Jurkat (T lymphocyte) ( 4 , 29 , 56 , 81 ) , K562 (erythroid) ( 31 , 54 , 71 ) , Kasumi-1 (myeloid) ( 32 ) , KG-1 (myeloid) ( 32 , 37 ) , KM-H2 (lymphoid) ( 4 ) , L1236 (lymphoid) ( 4 ) , L428 (lymphoid) ( 4 ) , L540 (lymphoid) ( 4 ) , L6 (myoblast) ( 77 ) , LCLC-103H (pulmonary) ( 33 ) , liver ( 25 , 66 ) , LLC-PK1 (renal) ( 75 ) , LOU-NH91 (squamous) ( 33 ) , MCF-7 (breast cell) ( 11 , 33 , 39 , 79 ) , MDA-MB-231 (breast cell) ( 33 , 39 , 59 ) , MDA-MB-453 (breast cell) ( 66 ) , MDA-MB-468 (breast cell) ( 33 ) , MV4-11 (macrophage) ( 32 ) , NB-4 (myeloid) ( 79 , 82 ) , NCI-H1299 (pulmonary) ( 68 ) , NCI-H1395 (pulmonary) ( 33 ) , NCI-H1568 (pulmonary) ( 33 ) , NCI-H157 (pulmonary) ( 33 ) , NCI-H1648 (pulmonary) ( 33 ) , NCI-H1666 (pulmonary) ( 33 ) , NCI-H2030 (pulmonary) ( 33 ) , NCI-H2172 (pulmonary) ( 33 ) , NCI-H292 (pulmonary) ( 45 ) , NCI-H322 (pulmonary) ( 33 ) , NCI-H460 (pulmonary) ( 33 ) , NCI-H520 (squamous) ( 33 ) , NCI-H647 (pulmonary) ( 33 ) , OPM-2 (plasma cell) ( 32 ) , ovary ( 21 ) , P31/FUJ (erythroid) ( 32 ) , pancreas ( 80 ) , PC9 (pulmonary) ( 33 ) , platelet-blood ( 63 ) , RL ('B lymphocyte, precursor') ( 32 ) , RPMI-8266 (plasma cell) ( 32 ) , SF767 (glial) ( 5 ) , SKBr3 (breast cell) ( 45 ) , SU-DHL-6 (B lymphocyte) ( 32 ) , U-118MG (glial) ( 5 ) , U-1810 (pulmonary) [EFNB3 (human), knockdown] ( 42 ) , U-1810 (pulmonary) ( 42 ) , U-251 MG (glial) ( 5 ) , U266 (plasma cell) ( 32 ) , U2OS (bone cell) [GR (human)] ( 86 ) , U373 MG (glial) ( 41 ) , U87MG (glial) ( 5 ) , VSMC ( 27 ) , WM115 (melanocyte) ( 64 ) , WM239A (melanocyte) ( 15 )

Upstream Regulation
Regulatory protein:
GSK3A (human) ( 23 ) , IKKB (human) ( 27 ) , Notch 1 (human) ( 76 ) , p53 (human) ( 76 ) , Pim1 (human) ( 4 ) , Pim2 (human) ( 4 ) , RAG1 (human) ( 41 ) , RHEB (human) ( 17 , 41 ) , SESN1 (human) ( 69 ) , SESN2 (mouse) ( 69 ) , TSC1 (human) ( 66 )
Putative in vivo kinases:
mTOR (human) ( 92 )
Kinases, in vitro:
DYRK2 (human) ( 84 ) , ERK1 (human) ( 91 ) , ERK2 (human) ( 92 ) , GSK3B (human) ( 8 ) , mTOR (human) ( 92 ) , mTOR (mouse) ( 57 )
Putative upstream phosphatases:
PPM1G (human) ( 5 )
Treatments:
1-azakenpaullone ( 23 ) , 4-HT ( 59 ) , 5(S)-HETE ( 85 ) , 9cRA ( 59 ) , acadesine ( 67 ) , AG490 ( 85 ) , amino_acid_starvation ( 41 ) , amino_acids ( 2 , 41 , 92 ) , angiotensin_2 ( 27 , 75 ) , anti-CD3/CD28 ( 81 ) , AR-A014418 ( 8 , 23 ) , batimastat ( 75 ) , bisindolylmaleimide ( 89 ) , compound_C ( 67 ) , CRM197 ( 75 ) , dexamethasone ( 59 ) , EGF ( 75 ) , H2O2 ( 67 ) , hyperoxia ( 78 ) , hypertonic_buffer ( 88 ) , hypoxia ( 3 ) , IFN-gamma ( 82 ) , imatinib ( 54 ) , insulin ( 2 , 36 , 77 , 83 , 84 , 86 , 89 , 92 ) , LY294002 ( 5 , 79 , 84 , 85 ) , metformin ( 49 , 77 ) , MK-2206 ( 5 ) , ML120B ( 27 ) , OSI-027 ( 54 ) , PAR1-activating_peptide ( 63 ) , PD184352 ( 84 , 89 ) , PD98059 ( 89 ) , phorbol_ester ( 89 ) , PP242 ( 24 ) , QLT0254 ( 80 ) , rapamycin ( 5 , 8 , 17 , 23 , 39 , 49 , 54 , 65 , 76 , 79 , 83 , 84 , 86 , 89 , 90 , 92 ) , retinoic_acid ( 59 , 79 ) , rottlerin ( 79 ) , SB202190 ( 84 ) , SEL24-B489 ( 4 ) , serum ( 90 ) , serum_starvation ( 41 ) , tamoxifen ( 59 ) , U0126 ( 89 ) , UV ( 67 ) , virus infection ( 41 )

Downstream Regulation
Effects of modification on 4E-BP1:
activity, inhibited ( 82 ) , molecular association, regulation ( 16 , 40 , 48 , 82 , 91 ) , phosphorylation ( 26 ) , protein conformation ( 48 )
Effects of modification on biological processes:
translation, altered ( 91 ) , translation, induced ( 5 , 41 ) , translation, inhibited ( 16 )
Inhibit interaction with:
EIF4E (human) ( 16 , 48 , 82 , 91 ) , mTOR (human) ( 40 )

Disease / Diagnostics Relevance
Relevant diseases:
HNSCC ( 44 )

References 

1

Wang C, et al. (2019) Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 574, 268-272
31578521   Curated Info

2

Yang G, et al. (2018) RagC phosphorylation autoregulates mTOR complex 1. EMBO J
30552228   Curated Info

3

Han KH, et al. (2017) Protein profiling and angiogenic effect of hypoxia-cultured human umbilical cord blood-derived mesenchymal stem cells in hindlimb ischemia. Tissue Cell 49, 680-690
28958480   Curated Info

4

Szydłowski M, et al. (2017) Expression of PIM kinases in Reed-Sternberg cells fosters immune privilege and tumor cell survival in Hodgkin lymphoma. Blood 130, 1418-1429
28698206   Curated Info

5

Xu K, et al. (2016) Phosphatidylinositol-3 kinase-dependent translational regulation of Id1 involves the PPM1G phosphatase. Oncogene 35, 5807-5816
27065332   Curated Info

6

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

7

Velásquez C, et al. (2016) Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation. Proc Natl Acad Sci U S A 113, 8466-71
27402756   Curated Info

8

Ito H, et al. (2016) GSK-3 directly regulates phospho-4EBP1 in renal cell carcinoma cell-line: an intrinsic subcellular mechanism for resistance to mTORC1 inhibition. BMC Cancer 16, 393
27387559   Curated Info

9

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

10

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

11

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

12

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

13

Sekiyama N, et al. (2015) Molecular mechanism of the dual activity of 4EGI-1: Dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1. Proc Natl Acad Sci U S A 112, E4036-45
26170285   Curated Info

14

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

15

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

16

Peter D, et al. (2015) Molecular Architecture of 4E-BP Translational Inhibitors Bound to eIF4E. Mol Cell 57, 1074-87
25702871   Curated Info

17

Tyagi R, et al. (2015) Rheb Inhibits Protein Synthesis by Activating the PERK-eIF2α Signaling Cascade. Cell Rep
25660019   Curated Info

18

Guo Z, et al. (2014) PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood 124, 1777-89
25006129   Curated Info

19

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

20

Wang R, et al. (2014) Global discovery of high-NaCl-induced changes of protein phosphorylation. Am J Physiol Cell Physiol 307, C442-54
24965592   Curated Info

21

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

22

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

23

Shin S, et al. (2014) Glycogen synthase kinase-3β positively regulates protein synthesis and cell proliferation through the regulation of translation initiation factor 4E-binding protein 1. Oncogene 33, 1690-9
23584478   Curated Info

24

Ducker GS, et al. (2014) Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors. Oncogene 33, 1590-600
23542178   Curated Info

25

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

26

Shin S, Wolgamott L, Roux PP, Yoon SO (2014) Casein kinase 1ε promotes cell proliferation by regulating mRNA translation. Cancer Res 74, 201-11
24247720   Curated Info

27

Doyon P, van Zuylen WJ, Servant MJ (2013) Role of IκB Kinase-β in the Growth-Promoting Effects of Angiotensin II In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 33, 2850-7
24135021   Curated Info

28

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

29

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

30

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

31

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

32

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

33

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

34

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

35

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

36

Wu D, et al. (2012) Intestinal cell kinase (ICK) promotes activation of mTOR complex 1 (mTORC1) through phosphorylation of Raptor Thr-908. J Biol Chem 287, 12510-9
22356909   Curated Info

37

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

38

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

39

Yellen P, et al. (2011) High-dose rapamycin induces apoptosis in human cancer cells by dissociating mTOR complex 1 and suppressing phosphorylation of 4E-BP1. Cell Cycle 10, 3948-56
22071574   Curated Info

40

Rapley J, Oshiro N, Ortiz-Vega S, Avruch J (2011) The mechanism of insulin-stimulated 4E-BP protein binding to mammalian target of rapamycin (mTOR) complex 1 and its contribution to mTOR complex 1 signaling. J Biol Chem 286, 38043-53
21914810   Curated Info

41

Clippinger AJ, Maguire TG, Alwine JC (2011) Human cytomegalovirus infection maintains mTOR activity and its perinuclear localization during amino acid deprivation. J Virol 85, 9369-76
21734039   Curated Info

42

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

43

Wang H, et al. (2011) Convergence of the mammalian target of rapamycin complex 1- and glycogen synthase kinase 3-β-signaling pathways regulates the innate inflammatory response. J Immunol 186, 5217-26
21422248   Curated Info

44

Frederick MJ, et al. (2011) Phosphoproteomic analysis of signaling pathways in head and neck squamous cell carcinoma patient samples. Am J Pathol 178, 548-71
21281788   Curated Info

45

Chandarlapaty S, et al. (2011) AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19, 58-71
21215704   Curated Info

46

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

47

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

48

Tait S, et al. (2010) Local control of a disorder-order transition in 4E-BP1 underpins regulation of translation via eIF4E. Proc Natl Acad Sci U S A 107, 17627-32
20880835   Curated Info

49

Zakikhani M, Blouin MJ, Piura E, Pollak MN (2010) Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 123, 271-9
20135346   Curated Info

50

Guo A (2010) CST Curation Set: 9970; Year: 2010; Biosample/Treatment: cell line, 293/rapamycin; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P Antibodies Used to Purify Peptides prior to LCMS: Millipore 05-368
Curated Info

51

Guo A (2010) CST Curation Set: 9969; Year: 2010; Biosample/Treatment: cell line, 293/Insulin; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P Antibodies Used to Purify Peptides prior to LCMS: Millipore 05-368
Curated Info

52

Guo A (2010) CST Curation Set: 9973; Year: 2010; Biosample/Treatment: cell line, 293/Insulin; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P Antibodies Used to Purify Peptides prior to LCMS: Millipore 05-368
Curated Info

53

Guo A (2010) CST Curation Set: 9974; Year: 2010; Biosample/Treatment: cell line, 293/rapamycin; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P Antibodies Used to Purify Peptides prior to LCMS: Millipore 05-368
Curated Info

54

Carayol N, et al. (2010) Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci U S A 107, 12469-74
20616057   Curated Info

55

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

56

Possemato A (2010) CST Curation Set: 9793; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pSP
Curated Info

57

Chen CC, et al. (2010) FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell 18, 592-604
20412774   Curated Info

58

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

59

Eto I (2010) Upstream molecular signaling pathways of p27(Kip1) expression: Effects of 4-hydroxytamoxifen, dexamethasone, and retinoic acids. Cancer Cell Int 10, 3
20170512   Curated Info

60

Bai D, Ueno L, Vogt PK (2009) Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer 125, 2863-70
19609947   Curated Info

61

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

62

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

63

Hunter RW, Mackintosh C, Hers I (2009) Protein Kinase C-mediated Phosphorylation and Activation of PDE3A Regulate cAMP Levels in Human Platelets. J Biol Chem 284, 12339-48
19261611   Curated Info

64

Old WM, et al. (2009) Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol Cell 34, 115-31
19362540   Curated Info

65

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

66

Lee DF, et al. (2008) IKKbeta suppression of TSC1 function links the mTOR pathway with insulin resistance. Int J Mol Med 22, 633-8
18949383   Curated Info

67

Cao C, et al. (2008) AMP-activated protein kinase contributes to UV- and H2O2-induced apoptosis in human skin keratinocytes. J Biol Chem 283, 28897-908
18715874   Curated Info

68

Tsai CF, et al. (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7, 4058-69
18707149   Curated Info

69

Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451-60
18692468   Curated Info

70

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

71

Stokes M (2008) CST Curation Set: 4392; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

72

Fonseca BD, Lee VH, Proud CG (2008) The binding of PRAS40 to 14-3-3 proteins is not required for activation of mTORC1 signalling by phorbol esters/ERK. Biochem J 411, 141-9
18215133   Curated Info

73

Imami K, et al. (2008) Automated Phosphoproteome Analysis for Cultured Cancer Cells by Two-Dimensional NanoLC-MS Using a Calcined Titania/C18 Biphasic Column. Anal Sci 24, 161-6
18187866   Curated Info

74

Molina H, et al. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A 104, 2199-204
17287340   Curated Info

75

Chen J, Chen JK, Neilson EG, Harris RC (2006) Role of EGF receptor activation in angiotensin II-induced renal epithelial cell hypertrophy. J Am Soc Nephrol 17, 1615-23
16641152   Curated Info

76

Mungamuri SK, Yang X, Thor AD, Somasundaram K (2006) Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res 66, 4715-24
16651424   Curated Info

77

Tzatsos A, Kandror KV (2006) Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol 26, 63-76
16354680   Curated Info

78

Shenberger JS, et al. (2005) Hyperoxia alters the expression and phosphorylation of multiple factors regulating translation initiation. Am J Physiol Lung Cell Mol Physiol 288, L442-9
15542544   Curated Info

79

Lal L, et al. (2005) Activation of the p70 S6 kinase by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood 105, 1669-77
15471950   Curated Info

80

Yau CY, Wheeler JJ, Sutton KL, Hedley DW (2005) Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts. Cancer Res 65, 1497-504
15735038   Curated Info

81

Chan SM, et al. (2004) Protein microarrays for multiplex analysis of signal transduction pathways. Nat Med 10, 1390-6
15558056   Curated Info

82

Lekmine F, et al. (2004) Interferon-gamma engages the p70 S6 kinase to regulate phosphorylation of the 40S S6 ribosomal protein. Exp Cell Res 295, 173-82
15051500   Curated Info

83

Beugnet A, Wang X, Proud CG (2003) Target of rapamycin (TOR)-signaling and RAIP motifs play distinct roles in the mammalian TOR-dependent phosphorylation of initiation factor 4E-binding protein 1. J Biol Chem 278, 40717-22
12912989   Curated Info

84

Wang X, et al. (2003) The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Mol Cell Biol 23, 1546-57
12588975   Curated Info

85

Zeng ZZ, Yellaturu CR, Neeli I, Rao GN (2002) 5(S)-hydroxyeicosatetraenoic acid stimulates DNA synthesis in human microvascular endothelial cells via activation of Jak/STAT and phosphatidylinositol 3-kinase/Akt signaling, leading to induction of expression of basic fibroblast growth factor 2. J Biol Chem 277, 41213-9
12193593   Curated Info

86

Tee AR, et al. (2002) Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A 99, 13571-6
12271141   Curated Info

87

Fukuda R, et al. (2002) Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 277, 38205-11
12149254   Curated Info

88

Morley SJ, Naegele S (2002) Phosphorylation of eukaryotic initiation factor (eIF) 4E is not required for de novo protein synthesis following recovery from hypertonic stress in human kidney cells. J Biol Chem 277, 32855-9
12138083   Curated Info

89

Herbert TP, Tee AR, Proud CG (2002) The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J Biol Chem 277, 11591-6
11799119   Curated Info

90

Gingras AC, et al. (2001) Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15, 2852-64
11691836   Curated Info

91

Heesom KJ, Gampel A, Mellor H, Denton RM (2001) Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr Biol 11, 1374-9
11553333   Curated Info

92

Mothe-Satney I, et al. (2000) Mammalian target of rapamycin-dependent phosphorylation of PHAS-I in four (S/T)P sites detected by phospho-specific antibodies. J Biol Chem 275, 33836-43
10942774   Curated Info

93

MS This site is one of 509 sites observed by D. Stover et al using MS/FTMS of peptides from lysates of A431 cells grown either in vitro or as xenografts in BALB/c nu/nu mice. These sites were previously unpublished until now (July 27 2006). 66 sites were previously published in: Stover DR, et al. Differential phosphoprofiles of EGF and EGFR kinase inhibitor-treated human tumor cells and mouse xenografts Clin Proteomics 2004 Mar 01; 1(1): 69-80.
Curated Info