Ser1290
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus®
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser1290  -  MYO9B (human)

Site Information
RVQEKPDsPGGstQI   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 1983797

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 19 , 20 , 21 , 22 , 23 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 )
Disease tissue studied:
breast cancer ( 4 , 9 , 10 , 21 ) , breast ductal carcinoma ( 9 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, surrounding tissue ( 2 ) , breast cancer, triple negative ( 2 , 9 ) , cervical cancer ( 38 ) , cervical adenocarcinoma ( 38 ) , leukemia ( 25 , 26 ) , acute myelogenous leukemia ( 25 ) , T cell leukemia ( 26 ) , hepatocellular carcinoma, surrounding tissue ( 37 ) , lung cancer ( 15 , 21 , 27 , 30 , 46 ) , non-small cell lung cancer ( 21 , 46 ) , non-small cell lung adenocarcinoma ( 15 , 27 ) , neuroblastoma ( 20 ) , ovarian cancer ( 9 ) , pancreatic ductal adenocarcinoma ( 13 ) , melanoma skin cancer ( 7 )
Relevant cell line - cell type - tissue:
'pancreatic, ductal'-pancreas ( 13 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 34 ) , 293 (epithelial) [AT1 (human), transfection] ( 32 ) , 293T (epithelial) ( 6 ) , 786-O (renal) ( 5 ) , 786-O (renal) [VHL (human), transfection] ( 5 ) , A549 (pulmonary) ( 16 ) , breast ( 2 , 9 ) , BT-20 (breast cell) ( 21 ) , BT-474 (breast cell) ( 4 ) , BT-549 (breast cell) ( 21 ) , CL1-0 (pulmonary) ( 30 ) , CL1-1 (pulmonary) ( 30 ) , CL1-2 (pulmonary) ( 30 ) , CL1-5 (pulmonary) ( 30 ) , DG75 (B lymphocyte) ( 31 ) , endothelial-aorta ( 22 ) , Flp-In T-Rex-293 (epithelial) ( 23 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 23 ) , GM00130 (B lymphocyte) ( 36 ) , H2009 (pulmonary) ( 21 ) , H2077 (pulmonary) ( 21 ) , H2887 (pulmonary) ( 21 ) , H322 (pulmonary) ( 21 ) , H322M (pulmonary) ( 21 ) , HCC1359 (pulmonary) ( 21 ) , HCC1937 (breast cell) ( 21 ) , HCC2279 (pulmonary) ( 21 ) , HCC366 (pulmonary) ( 21 ) , HCC4006 (pulmonary) ( 21 ) , HCC78 (pulmonary) ( 21 ) , HCC827 (pulmonary) ( 21 ) , HCT116 (intestinal) ( 42 ) , HeLa (cervical) ( 1 , 8 , 19 , 29 , 39 , 43 , 48 ) , HeLa S3 (cervical) ( 38 , 47 ) , HeLa_Meta (cervical) ( 35 ) , HeLa_Pro (cervical) ( 35 ) , HeLa_Telo (cervical) ( 35 ) , hepatocyte-liver ( 37 ) , HMLER ('stem, breast cancer') ( 10 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 10 ) , HOP62 (pulmonary) ( 21 ) , HUES-7 ('stem, embryonic') ( 41 ) , HUES-9 ('stem, embryonic') ( 28 ) , Jurkat (T lymphocyte) ( 17 , 33 , 40 , 44 ) , K562 (erythroid) ( 19 , 39 ) , KG-1 (myeloid) ( 25 ) , Kit225 (T lymphocyte) ( 26 ) , LCLC-103H (pulmonary) ( 21 ) , liver ( 12 ) , lung ( 15 ) , MCF-7 (breast cell) ( 4 , 21 ) , MDA-MB-231 (breast cell) ( 21 ) , MDA-MB-435S (breast cell) ( 42 ) , MDA-MB-468 (breast cell) ( 21 ) , MV4-11 (macrophage) ( 42 ) , NB10 (neural crest) ( 20 ) , NCI-H1299 (pulmonary) ( 46 ) , NCI-H1395 (pulmonary) ( 21 ) , NCI-H1568 (pulmonary) ( 21 ) , NCI-H157 (pulmonary) ( 21 ) , NCI-H1666 (pulmonary) ( 21 ) , NCI-H2030 (pulmonary) ( 21 ) , NCI-H2172 (pulmonary) ( 21 ) , NCI-H520 (squamous) ( 21 ) , NCI-H647 (pulmonary) ( 21 ) , NPC (neural crest) ( 20 ) , ovary ( 9 ) , PANC-1 (pancreatic) ( 14 ) , PANC-1 (pancreatic) [PRP4 (human), knockdown, Lentiviral introduced doxycycline-inducible PRP4 shRNA] ( 14 ) , PC9 (pulmonary) ( 21 ) , platelet-blood ( 49 ) , SH-SY5Y (neural crest) ( 11 ) , T lymphocyte-blood ( 45 ) , U-1810 (pulmonary) ( 27 ) , U-1810 (pulmonary) [EFNB3 (human), knockdown] ( 27 ) , WM239A (epidermal) ( 7 )

Upstream Regulation
Regulatory protein:
PRP4 (human) ( 14 )
Treatments:
EGF ( 1 , 39 ) , LRRK2-IN-1 ( 11 ) , metastatic potential ( 30 ) , MG132_withdrawal ( 35 ) , U0126 ( 39 )

References 

1

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

4

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

5

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

6

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

7

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

8

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

9

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

10

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

11

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

12

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

13

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

14

Gao Q, et al. (2013) Evaluation of cancer dependence and druggability of PRP4 kinase using cellular, biochemical, and structural approaches. J Biol Chem 288, 30125-38
24003220   Curated Info

15

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

16

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

17

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

18

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

19

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

20

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

21

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

22

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

23

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

24

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

25

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

26

Osinalde N, et al. (2011) Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics. J Proteomics 75, 177-91
21722762   Curated Info

27

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

28

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

29

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

30

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

31

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

32

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

33

Possemato A (2010) CST Curation Set: 10051; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

34

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

35

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

36

Bennetzen MV, et al. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314-23
20164059   Curated Info

37

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

38

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

39

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

40

Possemato A (2009) CST Curation Set: 8361; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info

41

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

42

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

43

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

44

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

45

Carrascal M, et al. (2008) Phosphorylation analysis of primary human T lymphocytes using sequential IMAC and titanium oxide enrichment. J Proteome Res 7, 5167-76
19367720   Curated Info

46

Tsai CF, et al. (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7, 4058-69
18707149   Curated Info

47

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

48

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

49

Zahedi RP, et al. (2008) Phosphoproteome of resting human platelets. J Proteome Res 7, 526-34
18088087   Curated Info