Thr187
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr187  -  TAK1 (human)

Site Information
CDIQtHMtNNKGsAA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 454704

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 2 ) , mutation of modification site ( 2 , 8 , 14 ) , peptide sequencing ( 7 ) , phospho-antibody ( 2 , 3 , 6 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ) , western blotting ( 2 , 3 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 )
Disease tissue studied:
gastric cancer ( 2 ) , gastric carcinoma ( 2 ) , liver cancer ( 7 ) , ovarian cancer ( 11 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
AlphaK3 (human) ( 2 ) , ATM (human) ( 7 ) , CLASP1 (human) ( 7 ) , P38A (human) ( 14 ) , PPP2CA (mouse) ( 10 ) , RALBP1 (human) ( 7 ) , TAB1 (human) ( 8 , 14 ) , TAB2 (human) ( 8 , 14 ) , TIFA (human) ( 2 ) , TRAF6 (human) ( 7 ) , UBE2N (human) ( 7 ) , yopJ (bacteria) ( 13 )
Putative in vivo kinases:
TAK1 (human) ( 8 , 10 , 14 )
Kinases, in vitro:
TAK1 (human) ( 13 , 15 )
Putative upstream phosphatases:
PPP2CA (mouse) ( 10 )
Phosphatases, in vitro:
PPP2CA (human) ( 10 , 12 )
Treatments:
anisomycin ( 9 ) , anti-CD3/CD28 ( 4 ) , BAPTA-AM ( 7 ) , calyculin_A ( 12 ) , ciclosporin ( 12 ) , EGF ( 9 ) , ethanol ( 12 ) , gomisin_A ( 6 ) , gomisin_N ( 6 ) , hypertonic_buffer ( 14 ) , IL-1a ( 12 , 13 ) , ionizing_radiation ( 7 ) , ionomycin ( 4 ) , okadaic_acid ( 10 , 12 ) , phorbol_ester ( 4 ) , SB203580 ( 6 , 9 , 13 , 14 ) , siRNA ( 9 , 10 , 14 ) , TAK1_inhibitor ( 3 , 6 ) , tautomycin ( 12 ) , TGF-beta ( 10 ) , TNF ( 2 , 6 , 9 , 11 , 14 )

Downstream Regulation
Effects of modification on TAK1:
enzymatic activity, induced ( 8 , 9 , 10 , 12 , 14 , 15 ) , phosphorylation ( 14 )
Effects of modification on biological processes:
transcription, altered ( 14 )

References 

1

Ohshima J, et al. (2019) programs epithelial cells to resist ZEB2 induction by . Proc Natl Acad Sci U S A 116, 8544-8553
30971493   Curated Info

2

Zimmermann S, et al. (2017) ALPK1- and TIFA-Dependent Innate Immune Response Triggered by the Helicobacter pylori Type IV Secretion System. Cell Rep 20, 2384-2395
28877472   Curated Info

3

Huang HL, Chiang CH, Hung WC, Hou MF (2015) Targeting of TGF-β-activated protein kinase 1 inhibits chemokine (C-C motif) receptor 7 expression, tumor growth and metastasis in breast cancer. Oncotarget 6, 995-1007
25557171   Curated Info

4

Yang CY, et al. (2014) Dual-Specificity Phosphatase 14 (DUSP14/MKP6) Negatively Regulates TCR Signaling by Inhibiting TAB1 Activation. J Immunol 192, 1547-57
24403530   Curated Info

5

Bhattacharyya S, et al. (2011) Specific effects of BCL10 Serine mutations on phosphorylations in canonical and noncanonical pathways of NF-{kappa}B activation following carrageenan. Am J Physiol Gastrointest Liver Physiol 301, G475-86
21700900   Curated Info

6

Waiwut P, et al. (2011) Gomisin N enhances TNF-α-induced apoptosis via inhibition of the NF-κB and EGFR survival pathways. Mol Cell Biochem 350, 169-75
21188622   Curated Info

7

Hinz M, et al. (2010) A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-κB activation. Mol Cell 40, 63-74
20932475   Curated Info

8

Scholz R, et al. (2010) Autoactivation of transforming growth factor beta-activated kinase 1 is a sequential bimolecular process. J Biol Chem 285, 25753-66
20538596   Curated Info

9

Shin MS, et al. (2009) Cross interference with TNF-alpha-induced TAK1 activation via EGFR-mediated p38 phosphorylation of TAK1-binding protein 1. Biochim Biophys Acta 1793, 1156-64
19393267   Curated Info

10

Kim SI, Kwak JH, Wang L, Choi ME (2008) Protein phosphatase 2A is a negative regulator of transforming growth factor-beta1-induced TAK1 activation in mesangial cells. J Biol Chem 283, 10753-63
18299321   Curated Info

11

Morrison BH, et al. (2007) Effect of inositol hexakisphosphate kinase 2 on transforming growth factor beta-activated kinase 1 and NF-kappaB activation. J Biol Chem 282, 15349-56
17379600   Curated Info

12

Kajino T, et al. (2006) Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway. J Biol Chem 281, 39891-6
17079228   Curated Info

13

Thiefes A, et al. (2006) The Yersinia enterocolitica effector YopP inhibits host cell signalling by inactivating the protein kinase TAK1 in the IL-1 signalling pathway. EMBO Rep 7, 838-44
16845370   Curated Info

14

Singhirunnusorn P, et al. (2005) Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-beta-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J Biol Chem 280, 7359-68
15590691   Curated Info

15

Sakurai H, Miyoshi H, Mizukami J, Sugita T (2000) Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett 474, 141-5
10838074   Curated Info