Ser204
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser204  -  CCDC25 (mouse)

Site Information
SNQDGNDsDEFM___   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 454468

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 5 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 )
Disease tissue studied:
anthrax infection ( 12 ) , leukemia ( 10 ) , acute myelogenous leukemia ( 10 ) , melanoma skin cancer ( 17 )
Relevant cell line - cell type - tissue:
'fat, brown' ( 13 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 16 ) , BaF3 ('B lymphocyte, precursor') [JAK3 (human), transfection] ( 1 ) , blood ( 10 ) , brain ( 13 , 14 , 19 ) , C2C12 (myoblast) ( 11 ) , heart ( 7 ) , Hepa 1-6 (epithelial) ( 18 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 3 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 3 ) , HL-1 (myocyte) ( 3 ) , kidney ( 13 ) , liver ( 5 , 9 , 13 ) , liver [leptin (mouse), homozygous knockout] ( 9 ) , lung ( 13 ) , macrophage-peritoneum [MPRIP (mouse), homozygous knockout] ( 8 ) , mpkCCD (renal) ( 15 ) , pancreas ( 13 ) , RAW 264.7 (macrophage) ( 2 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 17 ) , spleen ( 12 , 13 )

References 

1

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia
28852199   Curated Info

2

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

3

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

4

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

5

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

6

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

7

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

8

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

9

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

10

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

11

Knight JD, et al. (2012) A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts. Skelet Muscle 2, 5
22394512   Curated Info

12

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

13

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

14

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

15

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

16

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

17

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

18

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

19

Ballif BA, et al. (2004) Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics 3, 1093-101
15345747   Curated Info