Ser367
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.5
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser367  -  PSEN1 (human)

Site Information
AVQELsssILAGEDP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 454173

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 ) , mutation of modification site ( 1 ) , phospho-antibody ( 1 ) , western blotting ( 1 )
Disease tissue studied:
bone cancer ( 18 ) , osteosarcoma ( 18 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, triple negative ( 3 ) , cervical cancer ( 19 ) , cervical adenocarcinoma ( 19 ) , lung cancer ( 4 , 6 , 15 ) , non-small cell lung adenocarcinoma ( 4 , 6 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Treatments:
metastatic potential ( 15 ) , MG132_withdrawal ( 17 ) , nocodazole ( 19 )

Downstream Regulation
Effects of modification on PSEN1:
protein conformation ( 1 )

References 

1

Maesako M, et al. (2017) Pathogenic PS1 phosphorylation at Ser367. Elife 6
28132667   Curated Info

2

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

5

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

6

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

7

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

8

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

9

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

10

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

11

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

12

Mulhern D (2011) CST Curation Set: 12683; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y/M)Xp[ST](L/I/M)
Curated Info

13

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

14

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

15

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

16

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

17

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

18

Raijmakers R, et al. (2010) Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal Chem 82, 824-32
20058876   Curated Info

19

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

20

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

21

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

22

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

23

Thingholm TE, et al. (2008) TiO2-Based Phosphoproteomic Analysis of the Plasma Membrane and the Effects of Phosphatase Inhibitor Treatment. J Proteome Res 7, 3304-3313
18578522   Curated Info