Ser28
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser28  -  NCL (mouse)

Site Information
PKEVEEDsEDEEMsE   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 452262

In vivo Characterization
Methods used to characterize site in vivo:
electrophoretic mobility shift ( 1 ) , mass spectrometry ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 ) , mutation of modification site ( 1 )
Disease tissue studied:
anthrax infection ( 12 ) , leukemia ( 8 ) , acute myelogenous leukemia ( 8 ) , melanoma skin cancer ( 18 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 4 ) , 'pancreatic, ductal'-pancreas ( 1 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 15 ) , 32Dcl3 (myeloid) ( 15 ) , BaF3 ('B lymphocyte, precursor') [JAK3 (human), transfection] ( 2 ) , blood ( 8 ) , brain ( 9 , 13 ) , heart ( 5 ) , Hepa 1-6 (epithelial) ( 19 ) , kidney ( 13 ) , liver ( 7 , 13 , 16 , 20 ) , lung ( 13 ) , macrophage-bone marrow ( 14 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 14 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 10 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 6 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 6 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 11 ) , MEF (fibroblast) ( 6 , 11 ) , pancreas ( 13 ) , RAW 264.7 (macrophage) ( 3 ) , RAW 267.4 (macrophage) ( 17 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 18 ) , spleen ( 12 , 13 ) , testis ( 13 )

Upstream Regulation
Regulatory protein:
KRas (human) ( 1 )
Putative in vivo kinases:
CK2A1 (human) ( 1 )
Treatments:
IFN-gamma ( 17 ) , insulin ( 4 ) , LY294002 ( 4 ) , silmitasertib ( 1 ) , Trametinib ( 1 )

Downstream Regulation
Effects of modification on NCL:
molecular association, regulation ( 1 )
Effects of modification on biological processes:
carcinogenesis, induced ( 1 ) , cell growth, induced ( 1 ) , transcription, induced ( 1 )
Induce interaction with:
RNA ( 1 )

References 

1

Azman MS, et al. (2023) An ERK1/2-driven RNA-binding switch in nucleolin drives ribosome biogenesis and pancreatic tumorigenesis downstream of RAS oncogene. EMBO J, e110902
37039106   Curated Info

2

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 32
28852199   Curated Info

3

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

4

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

5

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

6

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

7

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

8

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

9

Goswami T, et al. (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain. Proteomics 12, 2185-9
22807455   Curated Info

10

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

11

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

12

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

13

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

14

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

15

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

16

Zhou J (2009) CST Curation Set: 7388; Year: 2009; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: QXp[ST]
Curated Info

17

Trost M, et al. (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30, 143-54
19144319   Curated Info

18

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

19

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

20

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info