Ser335
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser335  -  STRIP1 (human)

Site Information
IRNMRAAsPPAsAsD   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 486237

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 20 , 21 , 22 , 23 , 24 , 25 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 )
Disease tissue studied:
bone cancer ( 43 ) , osteosarcoma ( 43 ) , breast cancer ( 10 , 11 , 22 , 23 ) , breast ductal carcinoma ( 10 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, surrounding tissue ( 3 ) , breast cancer, triple negative ( 3 , 10 ) , cervical cancer ( 44 ) , cervical adenocarcinoma ( 44 ) , leukemia ( 27 , 29 ) , acute myelogenous leukemia ( 27 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 21 ) , acute megakaryoblastic leukemia (M7) ( 21 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 21 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 21 ) , acute myeloblastic leukemia, without maturation (M1) ( 21 ) , T cell leukemia ( 29 ) , hepatocellular carcinoma, surrounding tissue ( 42 ) , lung cancer ( 8 , 16 , 23 , 31 ) , non-small cell lung cancer ( 23 ) , non-small cell lung adenocarcinoma ( 8 , 16 , 31 ) , lymphoma ( 12 ) , B cell lymphoma ( 21 ) , Burkitt's lymphoma ( 12 ) , non-Hodgkin's lymphoma ( 21 ) , follicular lymphoma ( 12 ) , mantle cell lymphoma ( 12 ) , ovarian cancer ( 10 ) , pancreatic ductal adenocarcinoma ( 15 ) , multiple myeloma ( 21 , 41 ) , melanoma skin cancer ( 7 )
Relevant cell line - cell type - tissue:
'brain, cerebral cortex' ( 35 ) , 'muscle, skeletal' ( 28 ) , 'pancreatic, ductal'-pancreas ( 15 ) , 'stem, embryonic' ( 47 ) , 2048-EBV (lymphoblastoid) ( 48 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 38 ) , 293 (epithelial) [AT1 (human), transfection] ( 37 ) , 293 (epithelial) ( 50 ) , 293E (epithelial) ( 30 ) , 786-O (renal) [VHL (human), transfection] ( 5 ) , 786-O (renal) ( 5 ) , A498 (renal) ( 40 ) , A549 (pulmonary) ( 17 ) , AML-193 (monocyte) ( 21 ) , B lymphocyte-blood ( 41 ) , BJAB (B lymphocyte) ( 12 ) , breast ( 3 , 10 ) , BT-20 (breast cell) ( 23 ) , BT-549 (breast cell) ( 23 ) , Calu 6 (pulmonary) ( 23 ) , Chang liver (cervical) ( 58 ) , CMK (megakaryoblast) ( 21 ) , CTS (myeloid) ( 21 ) , DG75 (B lymphocyte) ( 36 ) , DOHH2 ('B lymphocyte, precursor') ( 21 ) , endothelial-aorta ( 24 ) , FL-18 (B lymphocyte) ( 12 ) , FL-318 (B lymphocyte) ( 12 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 25 ) , Flp-In T-Rex-293 (epithelial) ( 25 ) , GM00130 (B lymphocyte) ( 39 ) , H2009 (pulmonary) ( 23 ) , H2077 (pulmonary) ( 23 ) , H2887 (pulmonary) ( 23 ) , H322M (pulmonary) ( 23 ) , HCC1359 (pulmonary) ( 23 ) , HCC1937 (breast cell) ( 23 ) , HCC2279 (pulmonary) ( 23 ) , HCC366 (pulmonary) ( 23 ) , HCC4006 (pulmonary) ( 23 ) , HCC78 (pulmonary) ( 23 ) , HCC827 (pulmonary) ( 23 ) , HCT116 (intestinal) ( 49 , 51 ) , HEK293T (epithelial) ( 6 ) , HEL (erythroid) ( 21 ) , HeLa (cervical) ( 2 , 9 , 20 , 33 , 34 , 45 , 52 , 57 , 59 , 60 , 61 ) , HeLa S3 (cervical) ( 44 , 56 ) , hepatocyte-liver ( 42 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 11 ) , HMLER ('stem, breast cancer') ( 11 ) , HOP62 (pulmonary) ( 23 ) , HUES-7 ('stem, embryonic') ( 46 ) , HUES-9 ('stem, embryonic') ( 32 ) , JEKO-1 (B lymphocyte) ( 12 ) , Jurkat (T lymphocyte) ( 18 , 54 ) , K562 (erythroid) ( 20 , 45 ) , Kasumi-1 (myeloid) ( 21 ) , KG-1 (myeloid) ( 21 , 27 ) , Kit225 (T lymphocyte) ( 29 ) , LCLC-103H (pulmonary) ( 23 ) , liver ( 14 ) , lung ( 16 ) , MCF-7 (breast cell) ( 23 ) , MDA-MB-231 (breast cell) ( 23 ) , MDA-MB-468 (breast cell) ( 23 ) , MV4-11 (macrophage) ( 21 ) , NCEB-1 (B lymphocyte) ( 12 ) , NCI-H1395 (pulmonary) ( 23 ) , NCI-H1568 (pulmonary) ( 23 ) , NCI-H1648 (pulmonary) ( 23 ) , NCI-H2030 (pulmonary) ( 23 ) , NCI-H2172 (pulmonary) ( 23 ) , NCI-H322 (pulmonary) ( 23 ) , NCI-H520 (squamous) ( 23 ) , NCI-H647 (pulmonary) ( 23 ) , OCI-ly1 (B lymphocyte) ( 12 ) , OPM-2 (plasma cell) ( 21 ) , ovary ( 10 ) , P31/FUJ (erythroid) ( 21 ) , PC9 (pulmonary) ( 8 , 23 ) , Raji (B lymphocyte) ( 12 ) , RAMOS (B lymphocyte) ( 12 ) , REC-1 (B lymphocyte) ( 12 ) , RL ('B lymphocyte, precursor') ( 21 ) , RPMI-8266 (plasma cell) ( 21 ) , SH-SY5Y (neural crest) [LRRK2 (human), transfection, over-expression of LRRK2(G2019S)] ( 13 ) , SH-SY5Y (neural crest) ( 13 ) , SKBr3 (breast cell) ( 22 ) , SU-DHL-4 (B lymphocyte) ( 12 ) , SU-DHL-6 (B lymphocyte) ( 21 ) , T lymphocyte-blood ( 55 ) , U-1810 (pulmonary) [EFNB3 (human), knockdown] ( 31 ) , U-1810 (pulmonary) ( 31 ) , U266 (plasma cell) ( 21 ) , U2OS (bone cell) ( 43 ) , UPN-1 (B lymphocyte) ( 12 ) , Vero E6-S ('epithelial, kidney') ( 1 ) , WM115 (melanocyte) ( 53 ) , WM239A (melanocyte) ( 7 )

References 

1

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell
32645325   Curated Info

2

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

5

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

6

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

7

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

8

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

9

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

10

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

11

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

12

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

13

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

14

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

15

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

16

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

17

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

18

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

19

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

20

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

21

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

22

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

23

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

24

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

25

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

26

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

27

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

28

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

29

Osinalde N, et al. (2011) Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics. J Proteomics 75, 177-91
21722762   Curated Info

30

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

31

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

32

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

33

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

34

Hegemann B, et al. (2011) Systematic phosphorylation analysis of human mitotic protein complexes. Sci Signal 4, rs12
22067460   Curated Info

35

Herskowitz JH, et al. (2010) Phosphoproteomic Analysis Reveals Site-Specific Changes in GFAP and NDRG2 Phosphorylation in Frontotemporal Lobar Degeneration. J Proteome Res 9, 6368-79
20886841   Curated Info

36

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

37

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

38

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

39

Bennetzen MV, et al. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314-23
20164059   Curated Info

40

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

41

Ge F, et al. (2010) Phosphoproteomic analysis of primary human multiple myeloma cells. J Proteomics 73, 1381-90
20230923   Curated Info

42

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

43

Raijmakers R, et al. (2010) Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal Chem 82, 824-32
20058876   Curated Info

44

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

45

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

46

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

47

Brill LM, et al. (2009) Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5, 204-13
19664994   Curated Info

48

Depontieu FR, et al. (2009) Identification of tumor-associated, MHC class II-restricted phosphopeptides as targets for immunotherapy. Proc Natl Acad Sci U S A 106, 12073-8
19581576   Curated Info

49

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

50

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

51

Nagano K, et al. (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-74
19415658   Curated Info

52

Chen Y, et al. (2009) Combined integrin phosphoproteomic analyses and small interfering RNA--based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res 69, 3713-20
19351860   Curated Info

53

Old WM, et al. (2009) Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol Cell 34, 115-31
19362540   Curated Info

54

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

55

Carrascal M, et al. (2008) Phosphorylation analysis of primary human T lymphocytes using sequential IMAC and titanium oxide enrichment. J Proteome Res 7, 5167-76
19367720   Curated Info

56

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

57

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

58

Sui S, et al. (2008) Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy. Proteomics 8, 2024-34
18491316   Curated Info

59

Imami K, et al. (2008) Automated Phosphoproteome Analysis for Cultured Cancer Cells by Two-Dimensional NanoLC-MS Using a Calcined Titania/C18 Biphasic Column. Anal Sci 24, 161-6
18187866   Curated Info

60

Beausoleil SA, et al. (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285-92
16964243   Curated Info

61

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info