Ser456
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus®
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser456  -  MARK2 (human)

Site Information
sTAKVPAsPLPGLER   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 453135

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 16 , 17 , 18 , 19 , 20 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 )
Disease tissue studied:
bone cancer ( 33 ) , osteosarcoma ( 33 ) , breast cancer ( 4 , 7 , 8 , 18 ) , breast ductal carcinoma ( 7 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, surrounding tissue ( 2 ) , breast cancer, triple negative ( 2 , 7 ) , cervical cancer ( 34 ) , cervical adenocarcinoma ( 34 ) , colorectal cancer ( 56 ) , colorectal carcinoma ( 56 ) , leukemia ( 22 , 24 , 53 ) , acute myelogenous leukemia ( 22 ) , chronic myelogenous leukemia ( 53 ) , T cell leukemia ( 24 ) , lung cancer ( 12 , 18 , 56 ) , non-small cell lung cancer ( 18 ) , non-small cell lung adenocarcinoma ( 12 ) , lymphoma ( 9 ) , Burkitt's lymphoma ( 9 ) , follicular lymphoma ( 9 ) , mantle cell lymphoma ( 9 ) , neuroblastoma ( 17 ) , ovarian cancer ( 7 ) , pancreatic ductal adenocarcinoma ( 11 ) , melanoma skin cancer ( 5 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 23 ) , 'pancreatic, ductal'-pancreas ( 11 ) , 'stem, embryonic' ( 45 ) , 293 (epithelial) ( 47 ) , 293E (epithelial) ( 25 ) , A549 (pulmonary) ( 13 , 56 ) , BJAB (B lymphocyte) ( 9 ) , breast ( 2 , 7 ) , BT-20 (breast cell) ( 18 ) , BT-474 (breast cell) ( 4 ) , BT-549 (breast cell) ( 18 ) , Calu 6 (pulmonary) ( 18 ) , FL-18 (B lymphocyte) ( 9 ) , FL-318 (B lymphocyte) ( 9 ) , Flp-In T-Rex-293 (epithelial) ( 20 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 20 ) , H2009 (pulmonary) ( 18 ) , H2077 (pulmonary) ( 18 ) , H2887 (pulmonary) ( 18 ) , H322 (pulmonary) ( 18 ) , H322M (pulmonary) ( 18 ) , HCC1359 (pulmonary) ( 18 ) , HCC1937 (breast cell) ( 18 ) , HCC2279 (pulmonary) ( 18 ) , HCC366 (pulmonary) ( 18 ) , HCC4006 (pulmonary) ( 18 ) , HCC78 (pulmonary) ( 18 ) , HCC827 (pulmonary) ( 18 ) , HCT116 (intestinal) ( 46 , 56 ) , HeLa (cervical) ( 1 , 6 , 16 , 28 , 29 , 30 , 48 , 49 , 52 , 54 , 57 , 58 ) , HeLa S3 (cervical) ( 26 , 34 , 51 ) , HeLa_Meta (cervical) ( 32 ) , HeLa_Pro (cervical) ( 32 ) , HeLa_Telo (cervical) ( 32 ) , HMLER ('stem, breast cancer') ( 8 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 8 ) , HOP62 (pulmonary) ( 18 ) , HUES-7 ('stem, embryonic') ( 44 ) , HUES-9 ('stem, embryonic') ( 27 ) , JEKO-1 (B lymphocyte) ( 9 ) , Jurkat (T lymphocyte) ( 14 , 31 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 50 , 56 ) , K562 (erythroid) ( 16 , 53 ) , KG-1 (myeloid) ( 22 ) , Kit225 (T lymphocyte) ( 24 ) , LCLC-103H (pulmonary) ( 18 ) , leukocyte-blood ( 33 ) , LOU-NH91 (squamous) ( 18 ) , lung ( 12 ) , MCF-7 (breast cell) ( 4 , 18 ) , MDA-MB-231 (breast cell) ( 18 ) , MDA-MB-435S (breast cell) ( 46 ) , MDA-MB-468 (breast cell) ( 18 ) , MV4-11 (macrophage) ( 46 ) , NB10 (neural crest) ( 17 ) , NCEB-1 (B lymphocyte) ( 9 ) , NCI-H1395 (pulmonary) ( 18 ) , NCI-H1568 (pulmonary) ( 18 ) , NCI-H157 (pulmonary) ( 18 ) , NCI-H1648 (pulmonary) ( 18 ) , NCI-H1666 (pulmonary) ( 18 ) , NCI-H2030 (pulmonary) ( 18 ) , NCI-H2172 (pulmonary) ( 18 ) , NCI-H460 (pulmonary) ( 18 ) , NCI-H520 (squamous) ( 18 ) , NCI-H647 (pulmonary) ( 18 ) , NPC (neural crest) ( 17 ) , OCI-ly1 (B lymphocyte) ( 9 ) , ovary ( 7 ) , PC9 (pulmonary) ( 18 ) , platelet-blood ( 55 ) , Raji (B lymphocyte) ( 9 ) , RAMOS (B lymphocyte) ( 9 ) , REC-1 (B lymphocyte) ( 9 ) , SH-SY5Y (neural crest) [LRRK2 (human), transfection, over-expression of LRRK2(G2019S)] ( 10 ) , SU-DHL-4 (B lymphocyte) ( 9 ) , T lymphocyte-blood ( 19 ) , U2OS (bone cell) ( 33 ) , UPN-1 (B lymphocyte) ( 9 ) , WM239A (epidermal) ( 5 )

Upstream Regulation
Treatments:
anti-CD3 ( 19 ) , EGF ( 1 ) , LRRK2-IN-1 ( 10 )

References 

1

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

4

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

5

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

6

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

7

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

8

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

9

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

10

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

11

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

12

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

13

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

14

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

15

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

16

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

17

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

18

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

19

Ruperez P, Gago-Martinez A, Burlingame AL, Oses-Prieto JA (2012) Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells. Mol Cell Proteomics 11, 171-86
22499768   Curated Info

20

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

21

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

22

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

23

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

24

Osinalde N, et al. (2011) Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics. J Proteomics 75, 177-91
21722762   Curated Info

25

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

26

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

27

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

28

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

29

Hegemann B, et al. (2011) Systematic phosphorylation analysis of human mitotic protein complexes. Sci Signal 4, rs12
22067460   Curated Info

30

Zhou J (2010) CST Curation Set: 10708; Year: 2010; Biosample/Treatment: cell line, HeLa/untreated; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

31

Possemato A (2010) CST Curation Set: 10051; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

32

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

33

Raijmakers R, et al. (2010) Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal Chem 82, 824-32
20058876   Curated Info

34

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

35

Possemato A (2009) CST Curation Set: 8598; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

36

Possemato A (2009) CST Curation Set: 8594; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

37

Possemato A (2009) CST Curation Set: 8595; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

38

Possemato A (2009) CST Curation Set: 8596; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

39

Possemato A (2009) CST Curation Set: 8599; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

40

Possemato A (2009) CST Curation Set: 8588; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

41

Possemato A (2009) CST Curation Set: 8589; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

42

Possemato A (2009) CST Curation Set: 8590; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

43

Possemato A (2009) CST Curation Set: 8591; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

44

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

45

Brill LM, et al. (2009) Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5, 204-13
19664994   Curated Info

46

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

47

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

48

Chen Y, et al. (2009) Combined integrin phosphoproteomic analyses and small interfering RNA--based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res 69, 3713-20
19351860   Curated Info

49

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

50

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

51

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

52

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

53

Stokes M (2008) CST Curation Set: 4391; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

54

Cantin GT, et al. (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7, 1346-51
18220336   Curated Info

55

Zahedi RP, et al. (2008) Phosphoproteome of resting human platelets. J Proteome Res 7, 526-34
18088087   Curated Info

56

Wissing J, et al. (2007) Proteomics analysis of protein kinases by target class-selective prefractionation and tandem mass spectrometry. Mol Cell Proteomics 6, 537-47
17192257   Curated Info

57

Beausoleil SA, et al. (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285-92
16964243   Curated Info

58

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info