Ser315
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser315  -  PCYT1B (human)

Site Information
SRMLQALsPKQsPVs   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 453077

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 )
Disease tissue studied:
breast cancer ( 6 , 12 ) , leukemia ( 15 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 11 ) , acute megakaryoblastic leukemia (M7) ( 11 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 11 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 11 ) , T cell leukemia ( 15 ) , lung cancer ( 4 , 9 , 12 , 18 ) , non-small cell lung cancer ( 12 ) , non-small cell lung adenocarcinoma ( 4 , 9 ) , pancreatic ductal adenocarcinoma ( 8 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 14 ) , 'pancreatic, ductal'-pancreas ( 8 ) , 'stem, embryonic' ( 19 ) , 786-O (renal) [VHL (human), transfection] ( 3 ) , AML-193 (monocyte) ( 11 ) , BT-20 (breast cell) ( 12 ) , BT-549 (breast cell) ( 12 ) , CL1-0 (pulmonary) ( 18 ) , CL1-1 (pulmonary) ( 18 ) , CL1-2 (pulmonary) ( 18 ) , CL1-5 (pulmonary) ( 18 ) , CMK (megakaryoblast) ( 11 ) , H2009 (pulmonary) ( 12 ) , H2077 (pulmonary) ( 12 ) , H2887 (pulmonary) ( 12 ) , H322M (pulmonary) ( 12 ) , HCC1359 (pulmonary) ( 12 ) , HCC1937 (breast cell) ( 12 ) , HCC2279 (pulmonary) ( 12 ) , HCC366 (pulmonary) ( 12 ) , HCC4006 (pulmonary) ( 12 ) , HCC78 (pulmonary) ( 12 ) , HEL (erythroid) ( 11 ) , HeLa (cervical) ( 5 , 17 , 22 ) , HeLa S3 (cervical) ( 21 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 6 ) , HMLER ('stem, breast cancer') ( 6 ) , HOP62 (pulmonary) ( 12 ) , HUES-9 ('stem, embryonic') ( 16 ) , Jurkat (T lymphocyte) ( 10 , 20 ) , Kasumi-1 (myeloid) ( 11 ) , KG-1 (myeloid) ( 11 ) , Kit225 (T lymphocyte) ( 15 ) , liver ( 7 ) , LOU-NH91 (squamous) ( 12 ) , lung ( 9 ) , MCF-7 (breast cell) ( 12 ) , MDA-MB-231 (breast cell) ( 12 ) , MDA-MB-468 (breast cell) ( 12 ) , MV4-11 (macrophage) ( 11 ) , NCI-H1395 (pulmonary) ( 12 ) , NCI-H1568 (pulmonary) ( 12 ) , NCI-H157 (pulmonary) ( 12 ) , NCI-H1666 (pulmonary) ( 12 ) , NCI-H2030 (pulmonary) ( 12 ) , NCI-H2172 (pulmonary) ( 12 ) , NCI-H322 (pulmonary) ( 12 ) , NCI-H460 (pulmonary) ( 12 ) , NCI-H520 (squamous) ( 12 ) , NCI-H647 (pulmonary) ( 12 ) , P31/FUJ (erythroid) ( 11 ) , PC9 (pulmonary) ( 4 , 12 ) , Vero E6-S ('epithelial, kidney') ( 1 )

Upstream Regulation
Treatments:
metastatic potential ( 18 )

References 

1

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell
32645325   Curated Info

2

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

3

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

4

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

5

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

6

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

7

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

8

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

9

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

10

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

11

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

12

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

13

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

14

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

15

Osinalde N, et al. (2011) Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics. J Proteomics 75, 177-91
21722762   Curated Info

16

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

17

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

18

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

19

Brill LM, et al. (2009) Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5, 204-13
19664994   Curated Info

20

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

21

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

22

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info