Ser359
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.7
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser359  -  SSF1 (human)

Site Information
KKARVGGsDEEAsGI   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 452983

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 )
Disease tissue studied:
bone cancer ( 53 ) , osteosarcoma ( 53 ) , breast cancer ( 5 , 11 , 12 , 24 , 25 ) , breast ductal carcinoma ( 11 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, surrounding tissue ( 2 ) , breast cancer, triple negative ( 2 , 11 ) , cervical cancer ( 54 ) , cervical adenocarcinoma ( 54 ) , leukemia ( 26 , 30 , 68 , 69 ) , acute myelogenous leukemia ( 26 , 30 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 23 ) , acute megakaryoblastic leukemia (M7) ( 23 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 23 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 23 ) , acute myeloblastic leukemia, without maturation (M1) ( 23 ) , chronic myelogenous leukemia ( 68 , 69 ) , hepatocellular carcinoma, surrounding tissue ( 52 ) , lung cancer ( 9 , 17 , 25 , 37 , 43 , 65 ) , non-small cell lung cancer ( 25 , 65 ) , non-small cell lung adenocarcinoma ( 9 , 17 , 37 ) , lymphoma ( 13 ) , B cell lymphoma ( 23 ) , Burkitt's lymphoma ( 13 ) , non-Hodgkin's lymphoma ( 23 ) , follicular lymphoma ( 13 ) , mantle cell lymphoma ( 13 ) , neuroblastoma ( 22 ) , ovarian cancer ( 11 ) , pancreatic ductal adenocarcinoma ( 16 ) , multiple myeloma ( 23 ) , melanoma skin cancer ( 8 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 31 ) , 'pancreatic, ductal'-pancreas ( 16 ) , 'stem, embryonic' ( 59 ) , 293 (epithelial) [ADRB1 (human), no information, overexpresses human beta1-adrenergic (ß1AR- HEK293)] ( 70 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 46 ) , 293 (epithelial) [AT1 (human), transfection] ( 45 ) , 293 (epithelial) ( 61 ) , 293E (epithelial) ( 36 ) , 786-O (renal) [VHL (human), transfection] ( 6 ) , A498 (renal) ( 51 ) , A549 (pulmonary) ( 18 ) , AML-193 (monocyte) ( 23 ) , BJAB (B lymphocyte) ( 13 ) , breast ( 2 , 11 ) , BT-20 (breast cell) ( 25 ) , BT-474 (breast cell) ( 5 ) , BT-549 (breast cell) ( 25 ) , Calu 6 (pulmonary) ( 25 ) , CL1-0 (pulmonary) ( 43 ) , CL1-1 (pulmonary) ( 43 ) , CL1-2 (pulmonary) ( 43 ) , CL1-5 (pulmonary) ( 43 ) , CMK (megakaryoblast) ( 23 ) , CTS (myeloid) ( 23 ) , DG75 (B lymphocyte) ( 44 ) , DOHH2 ('B lymphocyte, precursor') ( 23 ) , endothelial-aorta ( 27 ) , FL-18 (B lymphocyte) ( 13 ) , FL-318 (B lymphocyte) ( 13 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 28 ) , Flp-In T-Rex-293 (epithelial) ( 28 ) , GM00130 (B lymphocyte) ( 50 ) , H2009 (pulmonary) ( 25 ) , H2077 (pulmonary) ( 25 ) , H2887 (pulmonary) ( 25 ) , H322M (pulmonary) ( 25 ) , HCC1359 (pulmonary) ( 25 ) , HCC1937 (breast cell) ( 25 ) , HCC2279 (pulmonary) ( 25 ) , HCC366 (pulmonary) ( 25 ) , HCC4006 (pulmonary) ( 25 ) , HCC78 (pulmonary) ( 25 ) , HCC827 (pulmonary) ( 25 ) , HCT116 (intestinal) ( 60 , 62 ) , HEK293T (epithelial) ( 7 ) , HEL (erythroid) ( 23 ) , HeLa (cervical) [OGT (rat), transfection] ( 55 ) , HeLa (cervical) ( 1 , 10 , 21 , 32 , 42 , 55 , 56 , 62 , 63 , 67 , 70 , 71 , 72 , 73 , 74 , 75 ) , HeLa S3 (cervical) [PLK1 (human), knockdown, Tet-inducible PLK1 siRNA] ( 40 ) , HeLa S3 (cervical) ( 40 , 54 , 57 , 66 ) , HeLa_Meta (cervical) ( 49 ) , HeLa_Pro (cervical) ( 49 ) , HeLa_Telo (cervical) ( 49 ) , hepatocyte-liver ( 52 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 12 ) , HMLER ('stem, breast cancer') ( 12 ) , HOP62 (pulmonary) ( 25 ) , HUES-7 ('stem, embryonic') ( 58 ) , HUES-9 ('stem, embryonic') ( 41 ) , JEKO-1 (B lymphocyte) ( 13 ) , Jurkat (T lymphocyte) ( 19 , 33 , 34 , 35 , 38 , 39 , 64 ) , K562 (erythroid) ( 21 , 56 , 68 , 69 ) , Kasumi-1 (myeloid) ( 23 ) , KG-1 (myeloid) ( 23 , 30 ) , LCLC-103H (pulmonary) ( 25 ) , leukocyte-blood ( 53 ) , liver ( 15 ) , LOU-NH91 (squamous) ( 25 ) , lung ( 17 ) , MCF-7 (breast cell) ( 4 , 5 , 25 ) , MDA-MB-231 (breast cell) ( 25 ) , MDA-MB-468 (breast cell) ( 25 ) , MV4-11 (macrophage) ( 23 , 26 , 60 ) , NB10 (neural crest) ( 22 ) , NCEB-1 (B lymphocyte) ( 13 ) , NCI-H1299 (pulmonary) ( 65 ) , NCI-H1395 (pulmonary) ( 25 ) , NCI-H1568 (pulmonary) ( 25 ) , NCI-H157 (pulmonary) ( 25 ) , NCI-H1648 (pulmonary) ( 25 ) , NCI-H1666 (pulmonary) ( 25 ) , NCI-H2030 (pulmonary) ( 25 ) , NCI-H2172 (pulmonary) ( 25 ) , NCI-H322 (pulmonary) ( 25 ) , NCI-H460 (pulmonary) ( 25 , 62 ) , NCI-H520 (squamous) ( 25 ) , NCI-H647 (pulmonary) ( 25 ) , NPC (neural crest) ( 22 ) , OCI-ly1 (B lymphocyte) ( 13 ) , OPM-2 (plasma cell) ( 23 ) , ovary ( 11 ) , P31/FUJ (erythroid) ( 23 , 26 ) , PC9 (pulmonary) ( 9 , 25 ) , Raji (B lymphocyte) ( 13 ) , RAMOS (B lymphocyte) ( 13 ) , REC-1 (B lymphocyte) ( 13 ) , RL ('B lymphocyte, precursor') ( 23 ) , RPMI-8266 (plasma cell) ( 23 ) , SH-SY5Y (neural crest) [LRRK2 (human), transfection, over-expression of LRRK2(G2019S)] ( 14 ) , SH-SY5Y (neural crest) ( 14 ) , SKBr3 (breast cell) ( 24 ) , SU-DHL-4 (B lymphocyte) ( 13 ) , SU-DHL-6 (B lymphocyte) ( 23 ) , U-1810 (pulmonary) [EFNB3 (human), knockdown] ( 37 ) , U-1810 (pulmonary) ( 37 ) , U266 (plasma cell) ( 23 ) , U2OS (bone cell) ( 53 ) , UPN-1 (B lymphocyte) ( 13 ) , WM239A (melanocyte) ( 8 )

Upstream Regulation
Treatments:
metastatic potential ( 43 ) , metformin ( 4 ) , MG132_withdrawal ( 49 )

References 

1

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

4

Sacco F, et al. (2016) Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires Signaling Networks Away from a Pro-growth State. Cell Syst 2, 159-71
27135362   Curated Info

5

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

6

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

7

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

8

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

9

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

10

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

11

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

12

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

13

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

14

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

15

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

16

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

17

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

18

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

19

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

20

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

21

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

22

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

23

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

24

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

25

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

26

Alcolea MP, et al. (2012) Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance. Mol Cell Proteomics 11, 453-66
22547687   Curated Info

27

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

28

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

29

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

30

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

31

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

32

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

33

Mulhern D (2011) CST Curation Set: 12431; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

34

Guo A (2011) CST Curation Set: 12077; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pTDXEAntibodies Used to Purify Peptides prior to LCMS: Phospho(Ser/Thr) CK2 Substrate (P-S/T3-100) Rabbit mAb Cat#: 8738
Curated Info

35

Guo A (2011) CST Curation Set: 12078; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pTDXEAntibodies Used to Purify Peptides prior to LCMS: Phospho(Ser/Thr) CK2 Substrate (P-S/T3-100) Rabbit mAb Cat#: 8738
Curated Info

36

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

37

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

38

Guo A (2011) CST Curation Set: 11848; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

39

Guo A (2011) CST Curation Set: 11849; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pTDXEAntibodies Used to Purify Peptides prior to LCMS: Phospho(Ser/Thr) CK2 Substrate (P-S/T3-100) Rabbit mAb Cat#: 8738
Curated Info

40

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

41

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

42

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

43

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

44

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

45

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

46

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

47

Zhou J (2010) CST Curation Set: 10002; Year: 2010; Biosample/Treatment: cell line, no cells/untreated &'||' untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

48

Zhou J (2010) CST Curation Set: 10003; Year: 2010; Biosample/Treatment: cell line, no cells/calyculin_A & pervanadate; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

49

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

50

Bennetzen MV, et al. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314-23
20164059   Curated Info

51

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

52

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

53

Raijmakers R, et al. (2010) Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal Chem 82, 824-32
20058876   Curated Info

54

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

55

Wang Z, et al. (2010) Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal 3, ra2
20068230   Curated Info

56

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

57

Malik R, et al. (2009) Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res 8, 4553-63
19691289   Curated Info

58

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

59

Brill LM, et al. (2009) Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5, 204-13
19664994   Curated Info

60

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

61

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

62

Nagano K, et al. (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-74
19415658   Curated Info

63

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

64

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

65

Tsai CF, et al. (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7, 4058-69
18707149   Curated Info

66

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

67

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

68

Stokes M (2008) CST Curation Set: 4391; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

69

Stokes M (2008) CST Curation Set: 4392; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

70

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

71

McNulty DE, Annan RS (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7, 971-80
18212344   Curated Info

72

Cantin GT, et al. (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7, 1346-51
18220336   Curated Info

73

Beausoleil SA, et al. (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285-92
16964243   Curated Info

74

Nousiainen M, et al. (2006) Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A 103, 5391-6
16565220   Curated Info

75

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info