Ser27
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser27  -  SIRT1 (human)

Site Information
ADREAAssPAGEPLR   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 452898

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 16 ) , immunoprecipitation ( 3 , 16 ) , mass spectrometry ( 1 , 4 , 5 , 6 , 7 , 8 , 9 , 11 , 12 , 13 , 14 , 15 , 17 , 19 , 20 , 21 ) , mass spectrometry (in vitro) ( 18 ) , microscopy-colocalization with upstream kinase ( 3 ) , mutation of modification site ( 8 , 16 , 18 ) , phospho-antibody ( 3 , 8 ) , western blotting ( 3 , 8 , 16 )
Disease tissue studied:
bone cancer ( 3 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, surrounding tissue ( 1 ) , breast cancer, triple negative ( 1 ) , leukemia ( 19 ) , chronic myelogenous leukemia ( 19 ) , lung cancer ( 3 , 6 , 12 ) , non-small cell lung cancer ( 3 ) , non-small cell lung adenocarcinoma ( 6 , 12 )
Relevant cell line - cell type - tissue:
293 (epithelial) ( 15 ) , 293E (epithelial) ( 11 ) , breast ( 1 ) , endothelial ( 8 ) , ES (stem) ( 20 ) , HEK293T (epithelial) ( 3 , 18 ) , HeLa (cervical) ( 4 , 9 , 13 , 16 , 21 ) , HUES-7 ('stem, embryonic') ( 14 ) , HUVEC (endothelial) ( 8 ) , Jurkat (T lymphocyte) ( 7 , 17 ) , K562 (erythroid) ( 9 , 19 ) , liver ( 5 ) , lung ( 6 ) , MEF (fibroblast) ( 8 ) , NCI-H1299 (pulmonary) ( 3 ) , U-1810 (pulmonary) [EFNB3 (human), knockdown] ( 12 ) , U-1810 (pulmonary) ( 12 ) , U2OS (bone cell) ( 3 )

Upstream Regulation
Putative in vivo kinases:
CAMKK2 (human) ( 8 ) , JNK1 (human) ( 18 )
Kinases, in vitro:
CAMKK2 (human) ( 8 ) , HIPK2 (human) ( 3 ) , JNK1 (human) ( 18 )
Treatments:
anisomycin ( 18 ) , pulsatile shear stress ( 8 ) , siRNA ( 8 ) , SP600125 ( 18 ) , STO-609 ( 8 )

Downstream Regulation
Effects of modification on SIRT1:
activity, induced ( 8 ) , enzymatic activity, induced ( 18 ) , intracellular localization ( 18 ) , protein stabilization ( 8 )
Effects of modification on biological processes:
signaling pathway regulation ( 8 ) , transcription, induced ( 8 )

Disease / Diagnostics Relevance
Relevant diseases:
atherosclerosis ( 8 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

3

Conrad E, et al. (2016) HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism. Cell Death Differ 23, 110-22
26113041   Curated Info

4

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

5

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

6

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

7

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

8

Wen L, et al. (2013) Ca2+/calmodulin-dependent protein kinase kinase β phosphorylation of Sirtuin 1 in endothelium is atheroprotective. Proc Natl Acad Sci U S A 110, E2420-7
23754392   Curated Info

9

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

10

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

11

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

12

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

13

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

14

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

15

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

16

Zschoernig B, Mahlknecht U (2009) Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2. Biochem Biophys Res Commun 381, 372-7
19236849   Curated Info

17

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

18

Nasrin N, et al. (2009) JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One 4, e8414
20027304   Curated Info

19

Stokes M (2008) CST Curation Set: 4391; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

20

Sasaki T, et al. (2008) Phosphorylation regulates SIRT1 function. PLoS One 3, e4020
19107194   Curated Info

21

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info