Thr248
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr248  -  SYAP1 (human)

Site Information
AEAVRPKtPPVVIKS   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 452894

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 16 , 17 , 18 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 )
Disease tissue studied:
breast cancer ( 9 , 10 ) , breast ductal carcinoma ( 9 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, surrounding tissue ( 3 ) , breast cancer, triple negative ( 3 , 9 ) , cervical cancer ( 30 ) , cervical adenocarcinoma ( 30 ) , leukemia ( 31 , 38 ) , acute myelogenous leukemia ( 31 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 17 ) , acute megakaryoblastic leukemia (M7) ( 17 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 17 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 17 ) , acute myeloblastic leukemia, without maturation (M1) ( 17 ) , chronic myelogenous leukemia ( 38 ) , lung cancer ( 7 , 18 , 23 , 26 , 33 , 34 ) , non-small cell lung cancer ( 18 , 33 , 34 ) , non-small cell lung adenocarcinoma ( 7 , 23 , 33 ) , B cell lymphoma ( 17 ) , non-Hodgkin's lymphoma ( 17 ) , ovarian cancer ( 9 ) , multiple myeloma ( 17 )
Relevant cell line - cell type - tissue:
293 (epithelial) [ADRB1 (human), no information, overexpresses human beta1-adrenergic (ß1AR- HEK293)] ( 36 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 28 ) , 293 (epithelial) [AT1 (human), transfection] ( 27 ) , 293 (epithelial) ( 32 ) , 293E (epithelial) ( 22 ) , 786-O (renal) [VHL (human), transfection] ( 5 ) , 786-O (renal) ( 5 ) , A549 (pulmonary) ( 13 ) , AML-193 (monocyte) ( 17 ) , bone marrow ( 31 ) , breast ( 3 , 9 ) , Calu 6 (pulmonary) ( 18 ) , CL1-0 (pulmonary) ( 26 ) , CL1-1 (pulmonary) ( 26 ) , CL1-2 (pulmonary) ( 26 ) , CL1-5 (pulmonary) ( 26 ) , CMK (megakaryoblast) ( 17 ) , CTS (myeloid) ( 17 ) , DOHH2 ('B lymphocyte, precursor') ( 17 ) , H2009 (pulmonary) ( 18 ) , H2077 (pulmonary) ( 18 ) , H2887 (pulmonary) ( 18 ) , H322M (pulmonary) ( 18 ) , HCC1359 (pulmonary) ( 18 ) , HCC2279 (pulmonary) ( 18 ) , HCC366 (pulmonary) ( 18 ) , HCC4006 (pulmonary) ( 18 ) , HCC78 (pulmonary) ( 18 ) , HCC827 (pulmonary) ( 18 ) , HEK293T (epithelial) ( 6 , 39 ) , HEL (erythroid) ( 17 ) , HeLa (cervical) ( 2 , 8 , 16 , 21 , 25 , 35 , 40 , 41 , 42 ) , HeLa S3 (cervical) ( 30 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 10 ) , HMLER ('stem, breast cancer') ( 10 ) , HOP62 (pulmonary) ( 18 ) , HUES-9 ('stem, embryonic') ( 24 ) , Jurkat (T lymphocyte) ( 14 , 29 ) , K562 (erythroid) ( 16 , 38 ) , Kasumi-1 (myeloid) ( 17 ) , KG-1 (myeloid) ( 17 ) , LCLC-103H (pulmonary) ( 18 ) , liver ( 12 ) , LOU-NH91 (squamous) ( 18 ) , MV4-11 (macrophage) ( 17 ) , NCI-H1395 (pulmonary) ( 18 ) , NCI-H1568 (pulmonary) ( 18 ) , NCI-H157 (pulmonary) ( 18 ) , NCI-H1648 (pulmonary) ( 18 ) , NCI-H1650 (pulmonary) ( 34 ) , NCI-H1666 (pulmonary) ( 18 ) , NCI-H2030 (pulmonary) ( 18 ) , NCI-H2172 (pulmonary) ( 18 ) , NCI-H2228 (pulmonary) ( 33 ) , NCI-H322 (pulmonary) ( 18 ) , NCI-H460 (pulmonary) ( 18 ) , NCI-H520 (squamous) ( 18 ) , NCI-H647 (pulmonary) ( 18 ) , OPM-2 (plasma cell) ( 17 ) , ovary ( 9 ) , P31/FUJ (erythroid) ( 17 ) , PC9 (pulmonary) ( 7 , 18 ) , platelet-blood ( 37 ) , RL ('B lymphocyte, precursor') ( 17 ) , RPMI-8266 (plasma cell) ( 17 ) , SH-SY5Y (neural crest) [LRRK2 (human), transfection, over-expression of LRRK2(G2019S)] ( 11 ) , SH-SY5Y (neural crest) ( 11 ) , SU-DHL-6 (B lymphocyte) ( 17 ) , U-1810 (pulmonary) ( 23 ) , U266 (plasma cell) ( 17 ) , Vero E6-S ('epithelial, kidney') ( 1 )

Upstream Regulation
Treatments:
EGF ( 40 ) , LRRK2-IN-1 ( 11 ) , metastatic potential ( 26 )

References 

1

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 182
32645325   Curated Info

2

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

5

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

6

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

7

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

8

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

9

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

10

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

11

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

12

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

13

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

14

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

15

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

16

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

17

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

18

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

19

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

20

Rikova K (2012) CST Curation Set: 14275; Year: 2012; Biosample/Treatment: cell line, Tumor pilot study 2mg/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

21

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

22

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

23

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

24

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

25

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

26

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

27

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

28

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

29

Possemato A (2010) CST Curation Set: 9286; Year: 2010; Biosample/Treatment: cell line, Jurkat/pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

30

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

31

Gu T (2009) CST Curation Set: 7662; Year: 2009; Biosample/Treatment: tissue, bone marrow/untreated; Disease: acute myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpTPAntibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK Substrates (PXTP) (46G11) Rabbit mAb Cat#: 4391, PTMScan(R) Phospho-MAPK Substrate Motif (PXpTP) Immunoaffinity Beads Cat#: 1983
Curated Info

32

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

33

Possemato A (2009) CST Curation Set: 6452; Year: 2009; Biosample/Treatment: cell line, NCI-H2228/control; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

34

Possemato A (2009) CST Curation Set: 6437; Year: 2009; Biosample/Treatment: cell line, NCI-H1650/control; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

35

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

36

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

37

Zahedi RP, et al. (2008) Phosphoproteome of resting human platelets. J Proteome Res 7, 526-34
18088087   Curated Info

38

Possemato A (2007) CST Curation Set: 2724; Year: 2007; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) CDKs Substrate Antibody Cat#: 2324, PTMScan(R) Phospho-CDK Substrate Motif (K/RS*PXK/R) Immunoaffinity Beads Cat#: 1981
Curated Info

39

Molina H, et al. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A 104, 2199-204
17287340   Curated Info

40

Olsen JV, et al. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-48
17081983   Curated Info

41

Beausoleil SA, et al. (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285-92
16964243   Curated Info

42

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info