Ser473
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser473  -  TIF1B (human)

Site Information
sGVkRsRsGEGEVsG   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 452391

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 4 , 5 , 26 , 42 ) , immunoprecipitation ( 8 , 12 , 17 ) , mass spectrometry ( 3 , 5 , 7 , 9 , 11 , 13 , 14 , 16 , 17 , 18 , 19 , 20 , 22 , 23 , 24 , 25 , 27 , 28 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 43 , 45 , 46 , 47 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 ) , mass spectrometry (in vitro) ( 48 ) , mutation of modification site ( 4 , 5 , 8 , 17 , 36 ) , phospho-antibody ( 4 , 5 , 6 , 8 , 12 , 15 , 17 , 21 , 26 , 29 , 36 , 42 , 48 ) , phosphopeptide mapping ( 17 ) , western blotting ( 4 , 5 , 6 , 8 , 12 , 15 , 17 , 21 , 26 , 29 , 36 , 42 , 48 )
Disease tissue studied:
ataxia-telangiectasia ( 36 ) , bone cancer ( 12 , 15 , 17 , 42 , 48 , 62 ) , Ewing's sarcoma ( 15 ) , osteosarcoma ( 62 ) , breast cancer ( 8 , 11 , 19 , 20 , 34 , 35 ) , breast ductal carcinoma ( 19 ) , HER2 positive breast cancer ( 9 ) , luminal A breast cancer ( 9 ) , luminal B breast cancer ( 9 ) , breast cancer, surrounding tissue ( 9 ) , breast cancer, triple negative ( 9 , 19 ) , cervical cancer ( 29 , 64 ) , cervical adenocarcinoma ( 29 , 64 ) , colorectal cancer ( 6 , 17 , 36 ) , colorectal carcinoma ( 6 , 17 , 36 ) , leukemia ( 37 , 43 , 46 , 82 , 83 ) , acute myelogenous leukemia ( 37 , 43 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 33 , 37 ) , acute megakaryoblastic leukemia (M7) ( 33 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 33 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 33 ) , acute myeloblastic leukemia, without maturation (M1) ( 33 ) , chronic myelogenous leukemia ( 82 , 83 ) , T cell leukemia ( 46 ) , hepatocellular carcinoma, surrounding tissue ( 61 ) , lung cancer ( 5 , 16 , 25 , 35 , 42 , 50 , 55 , 79 ) , non-small cell lung cancer ( 5 , 35 , 42 , 79 ) , non-small cell lung adenocarcinoma ( 5 , 16 , 25 , 50 ) , lymphoma ( 22 ) , B cell lymphoma ( 33 ) , Burkitt's lymphoma ( 22 ) , non-Hodgkin's lymphoma ( 33 ) , follicular lymphoma ( 22 ) , mantle cell lymphoma ( 22 ) , neuroblastoma ( 32 ) , ovarian cancer ( 19 ) , pancreatic ductal adenocarcinoma ( 23 ) , multiple myeloma ( 33 ) , prostate cancer ( 63 ) , melanoma skin cancer ( 14 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 45 ) , 'pancreatic, ductal'-pancreas ( 23 ) , 'stem, embryonic' ( 68 ) , 293 (epithelial) [ADRB1 (human), no information, overexpresses human beta1-adrenergic (ß1AR- HEK293)] ( 84 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 58 ) , 293 (epithelial) [AT1 (human), transfection] ( 57 ) , 293 (epithelial) ( 17 , 42 , 69 ) , 293E (epithelial) ( 49 ) , 3T3 (fibroblast) ( 4 , 36 ) , A498 (renal) ( 60 ) , A549 (pulmonary) ( 5 , 27 ) , AML-193 (monocyte) ( 33 ) , BJAB (B lymphocyte) ( 22 ) , breast ( 9 , 19 ) , BT-20 (breast cell) ( 35 ) , BT-474 (breast cell) ( 11 ) , BT-549 (breast cell) ( 35 ) , C3ABR (lymphoblastoid) ( 36 ) , Calu 6 (pulmonary) ( 35 ) , CL1-0 (pulmonary) ( 55 ) , CL1-1 (pulmonary) ( 55 ) , CL1-2 (pulmonary) ( 55 ) , CL1-5 (pulmonary) ( 55 ) , CMK (megakaryoblast) ( 33 ) , COS (fibroblast) ( 90 ) , CTS (myeloid) ( 33 ) , DG75 (B lymphocyte) ( 56 ) , DLD1 (intestinal) ( 6 ) , DOHH2 ('B lymphocyte, precursor') ( 33 ) , endothelial-aorta ( 38 ) , ES8 ( 15 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 40 ) , Flp-In T-Rex-293 (epithelial) ( 40 ) , GM00130 (B lymphocyte) ( 59 ) , H2009 (pulmonary) ( 35 ) , H2077 (pulmonary) ( 35 ) , H2887 (pulmonary) ( 35 ) , H322M (pulmonary) ( 35 ) , HCC1359 (pulmonary) ( 35 ) , HCC1937 (breast cell) ( 35 ) , HCC2279 (pulmonary) ( 35 ) , HCC366 (pulmonary) ( 35 ) , HCC4006 (pulmonary) ( 35 ) , HCC78 (pulmonary) ( 35 ) , HCC827 (pulmonary) ( 35 ) , HCT116 (intestinal) ( 6 , 17 , 70 ) , HCT15 (intestinal) ( 36 ) , HEK293T (epithelial) ( 4 , 5 , 13 , 36 , 92 ) , HEL (erythroid) ( 33 , 37 ) , HeLa (cervical) ( 7 , 17 , 18 , 31 , 36 , 47 , 48 , 53 , 54 , 65 , 75 , 76 , 80 , 84 , 85 , 86 , 89 , 93 , 95 ) , HeLa S3 (cervical) ( 29 , 51 , 64 , 66 ) , hepatocyte-liver ( 61 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 20 ) , HMLER ('stem, breast cancer') ( 20 ) , HOP62 (pulmonary) ( 35 ) , HT-29 (intestinal) ( 94 ) , hTERT-RPE1 (epithelial) ( 21 ) , HUES-7 ('stem, embryonic') ( 67 ) , HUES-9 ('stem, embryonic') ( 52 ) , HUVEC (endothelial) ( 5 , 26 ) , Jurkat (T lymphocyte) ( 28 , 71 , 72 , 73 , 74 , 77 , 87 , 88 ) , K562 (erythroid) ( 31 , 65 , 82 , 83 ) , Kasumi-1 (myeloid) ( 33 ) , KG-1 (myeloid) ( 33 , 43 ) , Kit225 (T lymphocyte) ( 46 ) , L3 (lymphoblastoid) ( 36 ) , LCLC-103H (pulmonary) ( 35 ) , LNCaP (prostate cell) ( 63 ) , LOU-NH91 (squamous) ( 35 ) , lung ( 25 ) , MCF-7 (breast cell) ( 8 , 11 , 35 ) , MDA-MB-231 (breast cell) ( 8 , 35 ) , MDA-MB-468 (breast cell) ( 35 ) , MDCKII (epithelial) ( 5 ) , MEF (fibroblast) ( 4 , 26 , 42 ) , MV4-11 (macrophage) ( 33 , 37 ) , NB10 (neural crest) ( 32 ) , NCI-H1299 (pulmonary) ( 42 , 79 ) , NCI-H1395 (pulmonary) ( 35 ) , NCI-H1568 (pulmonary) ( 35 ) , NCI-H157 (pulmonary) ( 35 ) , NCI-H1648 (pulmonary) ( 35 ) , NCI-H1666 (pulmonary) ( 35 ) , NCI-H2030 (pulmonary) ( 35 ) , NCI-H2172 (pulmonary) ( 35 ) , NCI-H322 (pulmonary) ( 35 ) , NCI-H460 (pulmonary) ( 35 , 70 ) , NCI-H520 (squamous) ( 35 ) , NCI-H647 (pulmonary) ( 35 ) , NPC (neural crest) ( 32 ) , OPM-2 (plasma cell) ( 33 ) , ovary ( 19 ) , P31/FUJ (erythroid) ( 33 ) , PANC-1 (pancreatic) [PRP4 (human), knockdown, Lentiviral introduced doxycycline-inducible PRP4 shRNA] ( 24 ) , PANC-1 (pancreatic) ( 24 ) , PC9 (pulmonary) ( 16 , 35 ) , Raji (B lymphocyte) ( 22 ) , REC-1 (B lymphocyte) ( 22 ) , RL ('B lymphocyte, precursor') ( 33 ) , RPMI-8266 (plasma cell) ( 33 ) , SKBr3 (breast cell) ( 34 ) , SU-DHL-4 (B lymphocyte) ( 22 ) , SU-DHL-6 (B lymphocyte) ( 33 ) , T lymphocyte-blood ( 39 , 78 ) , TERT20 ('stem, mesenchymal') ( 81 ) , U-1810 (pulmonary) [EFNB3 (human), knockdown] ( 50 ) , U-1810 (pulmonary) ( 50 ) , U266 (plasma cell) ( 33 ) , U2OS (bone cell) [GR (human)] ( 91 ) , U2OS (bone cell) ( 12 , 17 , 42 , 48 , 62 ) , Vero (epithelial) ( 5 ) , Vero E6-S ('epithelial, kidney') ( 3 ) , WM239A (melanocyte) ( 14 )

Upstream Regulation
Regulatory protein:
ATM (human) ( 36 , 42 ) , Chk2 (human) ( 12 ) , DNAPK (human) ( 42 ) , HP1 alpha (human) ( 42 ) , MAVS (human) ( 5 ) , MYD88 (human) ( 5 ) , PKR (human) ( 5 ) , PRKD1 (human) ( 40 ) , PRP4 (human) ( 24 ) , RIG (human) ( 5 )
Putative in vivo kinases:
Chk2 (human) ( 36 , 44 ) , MAPKAPK2 (human) ( 26 )
Kinases, in vitro:
Chk1 (human) ( 48 ) , MAPKAPK2 (human) ( 26 )
Putative upstream phosphatases:
PPP4C (human) ( 21 , 44 )
Phosphatases, in vitro:
PPP4C (human) ( 44 )
Treatments:
2-AP ( 5 ) , anti-CD3 ( 39 , 77 ) , arginine deprivation ( 8 ) , AZD7762 ( 17 , 48 ) , BI_4834 ( 47 ) , caffeine ( 48 ) , camptothecin ( 48 ) , Chk2_inhibitor_II ( 5 ) , double-stranded_RNA ( 5 ) , etomoxir ( 8 ) , etoposide ( 5 , 12 , 48 ) , glucose_starvation ( 8 ) , H2O2 ( 5 , 6 , 26 ) , hydroxyurea ( 4 , 48 ) , ionizing_radiation ( 21 , 36 , 42 , 44 , 48 , 59 ) , ischemia ( 19 ) , isoproterenol ( 84 ) , KU-55933 ( 48 ) , KU-60019 ( 5 ) , L-glutamine_withdrawal ( 8 ) , lapatinib ( 34 ) , MK2_inhibitor_III ( 26 ) , NAC ( 5 ) , neocarzinostatin ( 42 ) , nocodazole ( 64 ) , olaparib ( 15 ) , PF3644022 ( 5 ) , phleomycin ( 48 ) , poly(I-C) ( 5 ) , rottlerin ( 26 ) , SB-747651A ( 5 ) , SB202190 ( 5 ) , SB203580 ( 6 ) , serum_starvation ( 4 ) , siRNA ( 36 , 44 ) , U0126 ( 5 , 6 ) , UV ( 5 , 17 , 48 ) , UVC ( 36 ) , virus infection ( 5 , 26 )

Downstream Regulation
Effects of modification on TIF1B:
intracellular localization ( 5 ) , molecular association, regulation ( 4 , 12 )
Effects of modification on biological processes:
carcinogenesis, induced ( 26 ) , cell cycle regulation ( 21 , 44 ) , chromatin organization, altered ( 36 ) , DNA repair, induced ( 6 , 29 , 36 , 42 ) , transcription, induced ( 5 , 21 , 26 )
Induce interaction with:
MCM3 (human) ( 4 ) , MCM6 (human) ( 4 ) , PCNA (human) ( 4 ) , SUV39H1 (human) ( 4 )
Inhibit interaction with:
HP1 alpha (human) ( 12 )

References 

1

Chang J, et al. (2021) TRIM28 functions as a negative regulator of aggresome formation. Autophagy, 1-17
33783327   Curated Info

2

Li M, Xu X, Chang CW, Liu Y (2020) TRIM28 functions as the SUMO E3 ligase for PCNA in prevention of transcription induced DNA breaks. Proc Natl Acad Sci U S A 117, 23588-23596
32900933   Curated Info

3

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell
32645325   Curated Info

4

Jang SM, et al. (2018) KAP1 facilitates reinstatement of heterochromatin after DNA replication. Nucleic Acids Res
29955894   Curated Info

5

Krischuns T, et al. (2018) Phosphorylation of TRIM28 Enhances the Expression of IFN-β and Proinflammatory Cytokines During HPAIV Infection of Human Lung Epithelial Cells. Front Immunol 9, 2229
30323812   Curated Info

6

Shen LT, Chou HE, Kato M (2017) TIF1β is phosphorylated at serine 473 in colorectal tumor cells through p38 mitogen-activated protein kinase as an oxidative defense mechanism. Biochem Biophys Res Commun 492, 310-315
28864417   Curated Info

7

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

8

Cheng CT, et al. (2016) Metabolic Stress-Induced Phosphorylation of KAP1 Ser473 Blocks Mitochondrial Fusion in Breast Cancer Cells. Cancer Res 76, 5006-18
27364555   Curated Info

9

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

10

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

11

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

12

Magni M, et al. (2015) CCAR2/DBC1 is required for Chk2-dependent KAP1 phosphorylation and repair of DNA damage. Oncotarget 6, 17817-31
26158765   Curated Info

13

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

14

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

15

Gill SJ, et al. (2015) Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing's Sarcoma. PLoS One 10, e0140988
26505995   Curated Info

16

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

17

Blasius M, et al. (2014) A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response. Genes Dev 28, 1977-82
25189701   Curated Info

18

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

19

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

20

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

21

Shaltiel IA, et al. (2014) Distinct phosphatases antagonize the p53 response in different phases of the cell cycle. Proc Natl Acad Sci U S A 111, 7313-8
24711418   Curated Info

22

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

23

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

24

Gao Q, et al. (2013) Evaluation of cancer dependence and druggability of PRP4 kinase using cellular, biochemical, and structural approaches. J Biol Chem 288, 30125-38
24003220   Curated Info

25

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

26

King CA (2013) Kaposi's Sarcoma-Associated Herpesvirus Kaposin B Induces Unique Monophosphorylation of STAT3 at Serine 727 and MK2-Mediated Inactivation of the STAT3 Transcriptional Repressor TRIM28. J Virol 87, 8779-91
23740979   Curated Info

27

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

28

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

29

Kubota S, et al. (2013) Phosphorylation of KRAB-associated protein 1 (KAP1) at Tyr-449, Tyr-458, and Tyr-517 by nuclear tyrosine kinases inhibits the association of KAP1 and heterochromatin protein 1α (HP1α) with heterochromatin. J Biol Chem 288, 17871-83
23645696   Curated Info

30

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

31

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

32

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

33

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

34

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

35

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

36

Bolderson E, et al. (2012) Kruppel-associated Box (KRAB)-associated Co-repressor (KAP-1) Ser-473 Phosphorylation Regulates Heterochromatin Protein 1β (HP1-β) Mobilization and DNA Repair in Heterochromatin. J Biol Chem 287, 28122-31
22715096   Curated Info

37

Alcolea MP, et al. (2012) Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance. Mol Cell Proteomics 11, 453-66
22547687   Curated Info

38

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

39

Ruperez P, Gago-Martinez A, Burlingame AL, Oses-Prieto JA (2012) Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells. Mol Cell Proteomics 11, 171-86
22499768   Curated Info

40

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

41

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

42

White D, et al. (2012) The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation. Mol Cancer Res 10, 401-14
22205726   Curated Info

43

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

44

Lee DH, et al. (2012) Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J 31, 2403-15
22491012   Curated Info

45

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

46

Osinalde N, et al. (2011) Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics. J Proteomics 75, 177-91
21722762   Curated Info

47

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

48

Blasius M, et al. (2011) A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1. Genome Biol 12, R78
21851590   Curated Info

49

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

50

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

51

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

52

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

53

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

54

Hegemann B, et al. (2011) Systematic phosphorylation analysis of human mitotic protein complexes. Sci Signal 4, rs12
22067460   Curated Info

55

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

56

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

57

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

58

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

59

Bennetzen MV, et al. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314-23
20164059   Curated Info

60

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

61

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

62

Raijmakers R, et al. (2010) Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal Chem 82, 824-32
20058876   Curated Info

63

Chen L, Giorgianni F, Beranova-Giorgianni S (2010) Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry. J Proteome Res 9, 174-8
20044836   Curated Info

64

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

65

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

66

Malik R, et al. (2009) Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res 8, 4553-63
19691289   Curated Info

67

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

68

Brill LM, et al. (2009) Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5, 204-13
19664994   Curated Info

69

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

70

Nagano K, et al. (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-74
19415658   Curated Info

71

Zhou J (2009) CST Curation Set: 6543; Year: 2009; Biosample/Treatment: cell line, Jurkat/TPA; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info

72

Zhou J (2009) CST Curation Set: 6544; Year: 2009; Biosample/Treatment: cell line, Jurkat/TPA; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info

73

Zhou J (2009) CST Curation Set: 6541; Year: 2009; Biosample/Treatment: cell line, Jurkat/untreated; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info

74

Zhou J (2009) CST Curation Set: 6542; Year: 2009; Biosample/Treatment: cell line, Jurkat/untreated; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info

75

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

76

Zhou J (2009) CST Curation Set: 6342; Year: 2009; Biosample/Treatment: cell line, HeLa/UV; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info

77

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

78

Carrascal M, et al. (2008) Phosphorylation analysis of primary human T lymphocytes using sequential IMAC and titanium oxide enrichment. J Proteome Res 7, 5167-76
19367720   Curated Info

79

Tsai CF, et al. (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7, 4058-69
18707149   Curated Info

80

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

81

Thingholm TE, et al. (2008) TiO2-Based Phosphoproteomic Analysis of the Plasma Membrane and the Effects of Phosphatase Inhibitor Treatment. J Proteome Res 7, 3304-3313
18578522   Curated Info

82

Stokes M (2008) CST Curation Set: 4390; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

83

Stokes M (2008) CST Curation Set: 4391; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

84

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

85

McNulty DE, Annan RS (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7, 971-80
18212344   Curated Info

86

Cantin GT, et al. (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7, 1346-51
18220336   Curated Info

87

Stokes M (2008) CST Curation Set: 3884; Year: 2008; Biosample/Treatment: cell line, Jurkat/pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

88

Stokes M (2008) CST Curation Set: 3885; Year: 2008; Biosample/Treatment: cell line, Jurkat/pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

89

Yu LR, et al. (2007) Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res 6, 4150-62
17924679   Curated Info

90

Wang Y, et al. (2007) Profiling signaling polarity in chemotactic cells. Proc Natl Acad Sci U S A 104, 8328-33
17494752   Curated Info

91

Lowery DM, et al. (2007) Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J 26, 2262-73
17446864   Curated Info

92

Molina H, et al. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A 104, 2199-204
17287340   Curated Info

93

Beausoleil SA, et al. (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285-92
16964243   Curated Info

94

Kim JE, Tannenbaum SR, White FM (2005) Global phosphoproteome of HT-29 human colon adenocarcinoma cells. J Proteome Res 4, 1339-46
16083285   Curated Info

95

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info