Ser159
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser159  -  HBP2 (human)

Site Information
TTNKPVKsPtPTVNP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 15410709

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 10 , 11 , 12 , 13 , 14 )
Disease tissue studied:
breast cancer ( 5 ) , breast ductal carcinoma ( 5 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, surrounding tissue ( 2 ) , breast cancer, triple negative ( 2 , 5 ) , lung cancer ( 8 ) , non-small cell lung cancer ( 8 ) , melanoma skin cancer ( 3 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Treatments:
ischemia ( 5 )

References 

1

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 182
32645325   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

4

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

5

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

6

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

7

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

8

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

9

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

10

Guo A (2011) CST Curation Set: 12740; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

11

Guo A (2011) CST Curation Set: 12065; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

12

Guo A (2011) CST Curation Set: 12066; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

13

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

14

Possemato A (2010) CST Curation Set: 9286; Year: 2010; Biosample/Treatment: cell line, Jurkat/pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info