Ser445
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser445  -  MYPT1 (mouse)

Site Information
LGLRKtGsyGALAEI   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 452077

In vivo Characterization
Methods used to characterize site in vivo:
flow cytometry ( 7 ) , immunoprecipitation ( 7 ) , mass spectrometry ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 22 , 23 , 24 ) , mutation of modification site ( 7 ) , phospho-antibody ( 7 , 21 ) , western blotting ( 7 , 21 )
Disease tissue studied:
anthrax infection ( 18 ) , bone cancer ( 7 ) , neuroblastoma ( 16 ) , melanoma skin cancer ( 22 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 2 , 4 , 10 ) , 'fat, brown' ( 19 ) , 293 (epithelial) ( 7 ) , brain ( 13 ) , heart ( 11 , 19 ) , Hepa 1-6 (epithelial) ( 23 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 6 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 6 ) , HL-1 (myocyte) ( 6 ) , kidney ( 19 ) , liver ( 9 , 19 , 24 ) , lung ( 19 ) , macrophage-peritoneum ( 12 ) , MC3T3-E1 (preosteoblast) ( 3 ) , MEF (fibroblast) ( 12 , 15 ) , MEF (fibroblast) [LKB1 (mouse), transgenic] ( 21 ) , MEF (fibroblast) [NuaK1 (mouse), transgenic] ( 21 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 14 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 15 ) , mpkCCD (renal) ( 20 ) , N1E-115 (neuron) ( 16 ) , pancreas ( 19 ) , RAW 264.7 (macrophage) ( 5 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 22 ) , spleen ( 18 , 19 ) , stromal ( 8 ) , T lymphocyte-spleen ( 17 ) , testis ( 19 ) , U2OS (bone cell) ( 7 )

Upstream Regulation
Regulatory protein:
AMPKA1 (mouse) ( 21 ) , AMPKA2 (mouse) ( 21 ) , LKB1 (mouse) ( 21 )
Treatments:
A-769662 ( 21 ) , acadesine ( 21 ) , BX795 ( 21 ) , cell_detachment ( 21 ) , EDTA ( 7 , 21 )

References 

1

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

2

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

3

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

4

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

5

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

6

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

7

Banerjee S, et al. (2014) Interplay between Polo kinase, LKB1-activated NUAK1 kinase, PP1βMYPT1 phosphatase complex and the SCFβTrCP E3 ubiquitin ligase. Biochem J 461, 233-45
24785407   Curated Info

8

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

9

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

10

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

11

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

12

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

13

Goswami T, et al. (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain. Proteomics 12, 2185-9
22807455   Curated Info

14

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

15

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

16

Wang Y, et al. (2011) Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 286, 18190-201
21454597   Curated Info

17

Navarro MN, et al. (2011) Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat Immunol 12, 352-61
21399638   Curated Info

18

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

19

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

20

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

21

Zagórska A, et al. (2010) New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci Signal 3, ra25
20354225   Curated Info

22

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

23

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

24

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info