Ser349
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.5
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser349  -  SQSTM1 (human)

Site Information
sskEVDPstGELQsL   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 14580829

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 9 , 22 , 23 , 24 , 25 , 26 ) , mass spectrometry ( 28 ) , mutation of modification site ( 5 , 10 , 17 , 20 , 23 ) , phospho-antibody ( 1 , 4 , 5 , 6 , 7 , 8 , 9 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 24 , 25 , 27 ) , western blotting ( 1 , 4 , 5 , 6 , 7 , 8 , 9 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 )
Disease tissue studied:
Alzheimer's disease ( 27 ) , brain cancer ( 17 , 18 ) , glioblastoma ( 18 ) , glioblastoma multiforme ( 18 ) , glioma ( 17 , 18 ) , breast cancer ( 19 , 22 ) , esophageal cancer ( 7 ) , esophageal carcinoma ( 7 ) , leukemia ( 12 ) , chronic myelogenous leukemia ( 4 , 12 ) , liver cancer ( 5 , 10 , 11 ) , hepatocellular carcinoma ( 5 , 10 ) , lung cancer ( 19 ) , non-small cell lung cancer ( 19 ) , neuroblastoma ( 9 , 27 ) , rheumatoid arthritis ( 21 )
Relevant cell line - cell type - tissue:
'brain, cerebral cortex' ( 27 ) , 'muscle, skeletal' ( 15 ) , 293 (epithelial) ( 16 , 17 , 20 , 23 , 25 ) , A172 (glial) ( 18 ) , BEAS-2B (epithelial) ( 19 ) , DK-MG (glial) ( 18 ) , epidermal ( 6 ) , fibroblast ( 13 ) , GAMG (glial) ( 18 ) , H4 (glial) ( 17 , 18 ) , HAP1 ( 4 ) , HEK293T (epithelial) ( 10 , 22 , 26 ) , HeLa (cervical) ( 1 , 16 , 24 , 27 ) , hepatocyte ( 10 ) , HepG2 (hepatic) ( 11 ) , HK2 (epithelial) ( 19 ) , HMVEC (endothelial) ( 26 ) , Huh1 (hepatic) ( 5 , 10 ) , HUVEC (endothelial) ( 8 , 26 ) , Jurkat (T lymphocyte) ( 28 ) , K562 (erythroid) ( 12 ) , keratinocyte ( 6 ) , Kyse150 (esophageal) ( 7 ) , Kyse30 (esophageal) ( 7 ) , LN18 (glial) ( 18 ) , MCF-10A (breast cell) ( 22 ) , MCF-7 (breast cell) ( 22 ) , MDA-MB-231 (breast cell) ( 19 , 22 ) , MEF (fibroblast) ( 25 ) , MM1.S (lymphoblast) ( 14 ) , NCI-H1299 (pulmonary) ( 19 ) , RASFs (fibroblast) ( 21 ) , SH-SY5Y (neural crest) ( 9 , 27 ) , synovium ( 13 ) , T98G (glial) ( 18 ) , U-251 MG (glial) ( 18 ) , U87MG (glial) ( 18 )

Upstream Regulation
Regulatory protein:
ATG2B (human) ( 12 ) , CASP8 (human) ( 7 ) , CENPU (human) ( 26 ) , GSKIP (human) ( 12 ) , NGLY1 (human) ( 20 ) , PIK3C3 (human) ( 22 ) , TAK1 (human) ( 1 ) , TBK1 (human) ( 16 ) , TENT5C (human) ( 14 ) , TFEB (human) ( 17 ) , USP10 (human) ( 9 ) , USP8 (human) ( 1 )
Putative in vivo kinases:
CK1A (human) ( 24 ) , PKCD (human) ( 22 ) , ULK1 (human) ( 5 )
Kinases, in vitro:
CK1A (human) ( 24 ) , PKCD (human) ( 22 ) , ULK1 (human) ( 5 )
Treatments:
autophinib ( 13 ) , BafA1 ( 9 ) , bafilomycin_A ( 12 , 27 ) , bortezomib ( 14 ) , cycloheximide ( 4 ) , cysteine hydrochloride ( 11 ) , DEM ( 27 ) , dopamine ( 9 ) , epoxomicin ( 27 ) , exercise ( 15 ) , fingolimod ( 13 ) , Fugene ( 27 ) , GDS-23 ( 6 ) , hypoxia ( 15 ) , ischemia ( 15 ) , KRIBB11 ( 24 ) , licochalcone_A ( 21 ) , Lipofectamine ( 27 ) , MG132 ( 13 , 20 , 24 ) , MHY1485 ( 20 ) , monoammonium glycyrrhizinate ( 11 ) , MRT68921 ( 5 ) , serum ( 20 ) , serum_starvation ( 20 ) , TTM ( 8 ) , ULK-101 ( 5 ) , wortmannin ( 4 )

Downstream Regulation
Effects of modification on SQSTM1:
activity, induced ( 6 , 17 , 26 ) , intracellular localization ( 1 , 10 , 26 , 27 ) , molecular association, regulation ( 1 , 5 , 9 , 10 , 18 , 22 , 25 , 26 ) , protein conformation ( 10 ) , protein stabilization ( 17 , 20 )
Effects of modification on biological processes:
apoptosis, inhibited ( 8 , 9 ) , autophagy, induced ( 7 , 8 , 11 , 13 , 18 , 24 ) , autophagy, inhibited ( 20 , 26 ) , cell growth, induced ( 7 , 22 ) , signaling pathway regulation ( 5 , 7 , 8 , 11 ) , transcription, induced ( 5 , 6 , 9 , 10 , 26 ) , transcription, inhibited ( 16 )
Induce interaction with:
KEAP1 (human) ( 1 , 5 , 9 , 10 , 18 , 22 , 25 , 26 )

Disease / Diagnostics Relevance
Relevant diseases:
Alzheimer's disease ( 27 )

References 

1

Endo A, et al. (2024) USP8 prevents aberrant NF-κB and Nrf2 activation by counteracting ubiquitin signals from endosomes. J Cell Biol 223
38180476   Curated Info

2

McCarty N, Wang Y, Lyu L, Vu T (2024) TRIM44 promotes autophagy through SQSTM1 oligomerization in the response to oxidative stress induced by Arsenic Trioxide in cancer cells. Res Sq
38464079   Curated Info

3

Luo J, et al. (2024) SLC15A3 plays a crucial role in pulmonary fibrosis by regulating macrophage oxidative stress. Cell Death Differ
38374230   Curated Info

4

Danieli A, Vucak G, Baccarini M, Martens S (2023) Sequestration of translation initiation factors in p62 condensates. Cell Rep 42, 113583
38096057   Curated Info

5

Ikeda R, et al. (2023) Phosphorylation of phase-separated p62 bodies by ULK1 activates a redox-independent stress response. EMBO J, e113349
37306101   Curated Info

6

Miyoshi T, Keller BC, Ashino T, Numazawa S (2023) Noncanonical mechanism of Nrf2 activation by diacylglycerol polyethylene glycol adducts in normal human epidermal keratinocytes. PLoS One 18, e0291905
37819868   Curated Info

7

Li L, et al. (2022) Caspase-8 mutants activate Nrf2 via phosphorylating SQSTM1 to protect against oxidative stress in esophageal squamous cell carcinoma. Free Radic Biol Med 192, 51-62
36165926   Curated Info

8

Zhang M, et al. (2022) Ammonium tetrathiomolybdate triggers autophagy-dependent NRF2 activation in vascular endothelial cells. Cell Death Dis 13, 733
36008391   Curated Info

9

Sango J, et al. (2021) USP10 inhibits the dopamine-induced reactive oxygen species-dependent apoptosis of neuronal cells by stimulating the antioxidant Nrf2 activity. J Biol Chem, 101448
34838592   Curated Info

10

Faruk MO, et al. (2021) Phase-separated protein droplets of amyotrophic lateral sclerosis-associated p62/SQSTM1 mutants show reduced inner fluidity. J Biol Chem, 101405
34774801   Curated Info

11

Chu S, et al. (2021) Up-regulation of Nrf2/P62/Keap1 involves in the anti-fibrotic effect of combination of monoammonium glycyrrhizinate and cysteine hydrochloride induced by CCl. Eur J Pharmacol 913, 174628
34774851   Curated Info

12

Sakai SS, et al. (2021) Loss of and impairs the maintenance of the hematopoietic stem cell pool size. Mol Cell Biol, MCB0002421
34748402   Curated Info

13

Relic B, et al. (2021) TFEB phosphorylation on Serine 211 is induced by autophagy in human synovial fibroblasts and by p62/SQSTM1 overexpression in HEK293 cells. Biochem J 478, 3145-3155
34405859   Curated Info

14

Fucci C, et al. (2020) The Interaction of the Tumor Suppressor FAM46C with p62 and FNDC3 Proteins Integrates Protein and Secretory Homeostasis. Cell Rep 32, 108162
32966780   Curated Info

15

Gallego-Selles A, et al. (2020) Regulation of Nrf2/Keap1 signalling in human skeletal muscle during exercise to exhaustion in normoxia, severe acute hypoxia and post-exercise ischaemia: Influence of metabolite accumulation and oxygenation. Redox Biol 36, 101627
32863217   Curated Info

16

Foster AD, et al. (2020) ALS-associated TBK1 variant p.G175S is defective in phosphorylation of p62 and impacts TBK1-mediated signalling and TDP-43 autophagic degradation. Mol Cell Neurosci 108, 103539
32835772   Curated Info

17

Park JY, et al. (2019) TFEB activates Nrf2 by repressing its E3 ubiquitin ligase DCAF11 and promoting phosphorylation of p62. Sci Rep 9, 14354
31586112   Curated Info

18

Pölönen P, et al. (2019) Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma. Oncogene
31444413   Curated Info

19

Kerins MJ, et al. (2019) Genome wide CRISPR screen reveals autophagy disruption as the convergence mechanism that regulates the NRF2 transcription factor. Mol Cell Biol
31010806   Curated Info

20

Relic B, et al. (2018) Serum starvation raises turnover of phosphorylated p62/SQSTM1 (Serine 349), reveals expression of proteasome and N-glycanase1 interactive protein RAD23B and sensitizes human synovial fibroblasts to BAY 11-7085-induced cell death. Oncotarget 9, 35830-35843
30533198   Curated Info

21

Su X, et al. (2018) Licochalcone A activates Keap1-Nrf2 signaling to suppress arthritis via phosphorylation of p62 at serine 349. Free Radic Biol Med 115, 471-483
29233793   Curated Info

22

Jiang X, et al. (2017) VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene 36, 6850-6862
28846113   Curated Info

23

Jeong K, et al. (2017) CNOT2 promotes degradation of p62/SQSTM1 as a negative regulator in ATG5 dependent autophagy. Oncotarget 8, 46034-46046
28537904   Curated Info

24

Watanabe Y, Tsujimura A, Taguchi K, Tanaka M (2017) HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis. Autophagy 13, 133-148
27846364   Curated Info

25

Hashimoto K, et al. (2016) TAK1 Regulates the Nrf2 Antioxidant System Through Modulating p62/SQSTM1. Antioxid Redox Signal 25, 953-964
27245349   Curated Info

26

Gjyshi O, et al. (2015) Kaposi's Sarcoma-Associated Herpesvirus Induces Nrf2 Activation in Latently Infected Endothelial Cells through SQSTM1 Phosphorylation and Interaction with Polyubiquitinated Keap1. J Virol 89, 2268-86
25505069   Curated Info

27

Tanji K, et al. (2014) Phosphorylation of serine 349 of p62 in Alzheimer's disease brain. Acta Neuropathol Commun 2, 50
24886973   Curated Info

28

Mulhern D (2011) CST Curation Set: 12679; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y/M)Xp[ST](L/I/M)
Curated Info