Ser351
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.5
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser351  -  SQSTM1 (mouse)

Site Information
SsKEVDPsTGELQsL   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 14580829

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 5 , 23 ) , immunoprecipitation ( 17 , 18 , 23 ) , mutation of modification site ( 1 , 7 , 14 , 19 , 22 , 23 ) , phospho-antibody ( 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 20 , 21 , 23 ) , western blotting ( 1 , 2 , 4 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 )
Disease tissue studied:
liver cancer ( 14 , 18 , 23 ) , hepatocellular carcinoma ( 14 , 23 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 13 ) , 'neuron, cortical' ( 7 ) , 'neuron, cortical'-brain ( 15 ) , 293 (epithelial) ( 7 , 17 , 23 ) , 3T3 (fibroblast) ( 16 ) , brain ( 11 ) , C2C12 (myoblast) ( 13 ) , CD8+ (T lymphocyte) ( 5 ) , fibroblast ( 9 ) , heart ( 4 , 8 ) , HEK293T (epithelial) ( 1 , 18 ) , Hepa-1 (hepatic) ( 18 ) , Hepa-1c1c7 (hepatic) ( 12 ) , hepatocyte ( 23 ) , hepatocyte-liver ( 19 ) , HepG2 (hepatic) ( 18 ) , HLE (hepatic) ( 23 ) , HLF (hepatic) ( 23 ) , Huh1 (hepatic) ( 23 ) , Huh7 (hepatic) ( 14 , 23 ) , JHH-1 (hepatic) ( 23 ) , JHH-2 (hepatic) ( 23 ) , JHH-4 (hepatic) ( 23 ) , JHH-5 (hepatic) ( 23 ) , JHH-7 (hepatic) ( 23 ) , lens ( 10 ) , liver ( 21 ) , MEF (fibroblast) ( 1 , 11 , 12 , 17 , 18 , 22 , 23 ) , muscle ( 2 ) , myocyte-heart ( 6 ) , OUMS-29 (hepatocyte) ( 20 ) , synovium ( 9 )

Upstream Regulation
Regulatory protein:
AMPKA1 (mouse) ( 18 ) , C1QBP (human) ( 8 ) , GJA8 (mouse) ( 10 ) , NRF2 (human) ( 2 ) , NRF2 (mouse) ( 9 ) , PIK3C3 (human) ( 7 ) , PKAR1A (human) ( 6 ) , RPT2 (mouse) ( 21 ) , SQSTM1 (mouse) ( 11 )
Putative in vivo kinases:
AMPKA1 (human) ( 12 , 18 ) , CK1A (human) ( 1 ) , mTOR (human) ( 4 ) , PKCZ (mouse) ( 7 ) , TAK1 (mouse) ( 17 ) , ULK1 (human) ( 3 )
Kinases, in vitro:
mTOR (human) ( 23 ) , ULK1 (human) ( 3 )
Treatments:
(5Z)-7-oxozeaenol ( 7 ) , antibody ( 5 ) , arsenite ( 23 ) , bacterial infection ( 22 , 23 ) , bafilomycin_A ( 20 ) , chloroquine ( 1 ) , CK1-7 ( 7 ) , curcumin ( 7 ) , deferoxamine ( 16 ) , exercise training ( 13 ) , ezetimibe ( 18 ) , glucose_oxidase ( 14 ) , H2O2 ( 6 ) , high-fat diet ( 20 ) , HT-DNA ( 1 ) , ischemia/reperfusion ( 6 ) , isoproterenol ( 6 ) , LPS ( 4 ) , mechanical stress ( 13 ) , metformin ( 5 ) , methionine- and choline-deficient diet ( 18 ) , NaAsO2 ( 11 ) , niclosamide ( 12 ) , NKH_477 ( 6 ) , oleic_acid ( 20 ) , palmitate ( 12 ) , palmitoleic_acid ( 20 ) , PP242 ( 7 ) , rapamycin ( 5 , 23 ) , resatorvid ( 4 ) , SAR405 ( 7 ) , SB203580 ( 7 ) , Sinomenine ( 9 ) , siRNA ( 1 , 7 ) , SP600125 ( 7 ) , SSTC3 ( 1 ) , Torin1 ( 7 , 23 ) , U0126 ( 7 ) , valinomycin ( 23 ) , wortmannin ( 7 )

Downstream Regulation
Effects of modification on SQSTM1:
activity, induced ( 12 , 23 ) , enzymatic activity, induced ( 23 ) , intracellular localization ( 15 ) , molecular association, regulation ( 1 , 11 , 17 , 23 ) , phosphorylation ( 9 ) , protein stabilization ( 7 , 9 )
Effects of modification on biological processes:
autophagy, induced ( 1 , 4 , 6 , 12 , 14 , 15 , 16 , 21 , 23 ) , carcinogenesis, altered ( 2 ) , carcinogenesis, induced ( 23 ) , carcinogenesis, inhibited ( 5 ) , cell growth, induced ( 5 , 23 ) , signaling pathway regulation ( 2 , 3 , 6 , 9 , 23 ) , transcription, altered ( 11 ) , transcription, induced ( 1 , 3 , 5 , 6 , 7 , 22 , 23 ) , transcription, inhibited ( 19 )
Induce interaction with:
KEAP1 (human) ( 17 , 23 ) , KEAP1 (mouse) ( 11 ) , STING (human) ( 1 )

Disease / Diagnostics Relevance
Relevant diseases:
hepatocellular carcinoma ( 23 )

References 

1

Pan M, et al. (2023) CSNK1A1/CK1α suppresses autoimmunity by restraining the CGAS-STING1 signaling. Autophagy, 1-18
37723657   Curated Info

2

Yamada M, et al. (2023) Muscle p62 stimulates the expression of antioxidant proteins alleviating cancer cachexia. FASEB J 37, e23156
37624620   Curated Info

3

Ikeda R, et al. (2023) Phosphorylation of phase-separated p62 bodies by ULK1 activates a redox-independent stress response. EMBO J, e113349
37306101   Curated Info

4

Matsuo I, et al. (2022) Role of TLR4 signaling on Porphyromonas gingivalis LPS-induced cardiac dysfunction in mice. PLoS One 17, e0258823
35648750   Curated Info

5

Nishida M, et al. (2021) Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. J Immunother Cancer 9
34531248   Curated Info

6

Liu Y, et al. (2021) Loss of PKA regulatory subunit 1α aggravates cardiomyocyte necrosis and myocardial ischemia/reperfusion injury. J Biol Chem 297, 100850
34087234   Curated Info

7

Park JY, Sohn HY, Koh YH, Jo C (2021) Curcumin activates Nrf2 through PKCδ-mediated p62 phosphorylation at Ser351. Sci Rep 11, 8430
33875681   Curated Info

8

Yagi M, et al. (2021) Mitochondrial translation deficiency impairs NAD -mediated lysosomal acidification. EMBO J, e105268
33528041   Curated Info

9

Liao K, et al. (2021) Sinomenine protects bone from destruction to ameliorate arthritis via activating p62-Keap1-Nrf2 feedback loop. Biomed Pharmacother 135, 111195
33395605   Curated Info

10

Jara O, et al. (2020) p62/Sequestosome 1 levels increase and phosphorylation is altered in Cx50D47A lenses, but deletion of p62/sequestosome 1 does not improve transparency. Mol Vis 26, 204-215
32214786   Curated Info

11

Deng Z, et al. (2019) ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy, 1-15
31362587   Curated Info

12

Park JS, Lee YS, Lee DH, Bae SH (2019) Repositioning of niclosamide ethanolamine (NEN), an anthelmintic drug, for the treatment of lipotoxicity. Free Radic Biol Med 137, 143-157
31035006   Curated Info

13

Yamada M, et al. (2019) p62/SQSTM1 and Nrf2 are essential for exercise-mediated enhancement of antioxidant protein expression in oxidative muscle. FASEB J, fj201900133R
30913396   Curated Info

14

Medvedev R, et al. (2017) HCV-induced oxidative stress by inhibition of Nrf2 triggers autophagy and favors release of viral particles. Free Radic Biol Med 110, 300-315
28673615   Curated Info

15

Ugun-Klusek A, et al. (2017) Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway. Cell Death Dis 8, e2531
28055010   Curated Info

16

Inoue H, et al. (2017) Iron deficiency induces autophagy and activates Nrf2 signal through modulating p62/SQSTM. Biomed Res 38, 343-350
29225212   Curated Info

17

Hashimoto K, et al. (2016) TAK1 Regulates the Nrf2 Antioxidant System Through Modulating p62/SQSTM1. Antioxid Redox Signal 25, 953-964
27245349   Curated Info

18

Lee DH, et al. (2016) Ezetimibe, an NPC1L1 inhibitor, is a potent Nrf2 activator that protects mice from diet-induced nonalcoholic steatohepatitis. Free Radic Biol Med 99, 520-532
27634173   Curated Info

19

Popineau L, et al. (2016) Novel Grb14-Mediated Cross Talk between Insulin and p62/Nrf2 Pathways Regulates Liver Lipogenesis and Selective Insulin Resistance. Mol Cell Biol 36, 2168-81
27215388   Curated Info

20

Miyagawa K, et al. (2016) Lipid-Induced Endoplasmic Reticulum Stress Impairs Selective Autophagy at the Step of Autophagosome-Lysosome Fusion in Hepatocytes. Am J Pathol 186, 1861-73
27157992   Curated Info

21

Kageyama S, et al. (2014) Proteasome dysfunction activates autophagy and the keap1-nrf2 pathway. J Biol Chem 289, 24944-55
25049227   Curated Info

22

Ishimura R, Tanaka K, Komatsu M (2014) Dissection of the role of p62/Sqstm1 in activation of Nrf2 during xenophagy. FEBS Lett 588, 822-8
24492006   Curated Info

23

Ichimura Y, et al. (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51, 618-31
24011591   Curated Info