Ser11
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser11  -  RCC1 (human)

Site Information
KRIAKRRsPPADAIP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 452007

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 50 ) , electrophoretic mobility shift ( 50 ) , mass spectrometry ( 2 , 3 , 4 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 51 , 52 , 53 , 55 , 56 , 57 , 58 ) , mutation of modification site ( 50 , 54 , 59 ) , phospho-antibody ( 54 , 59 ) , western blotting ( 54 )
Disease tissue studied:
breast cancer ( 6 , 12 , 13 , 25 , 26 ) , breast ductal carcinoma ( 12 ) , HER2 positive breast cancer ( 4 ) , luminal A breast cancer ( 4 ) , luminal B breast cancer ( 4 ) , breast cancer, surrounding tissue ( 4 ) , breast cancer, triple negative ( 4 , 12 ) , cervical cancer ( 46 ) , cervical adenocarcinoma ( 46 ) , leukemia ( 27 , 48 ) , acute myelogenous leukemia ( 27 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 24 ) , acute megakaryoblastic leukemia (M7) ( 24 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 24 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 24 ) , chronic myelogenous leukemia ( 48 ) , lung cancer ( 10 , 18 , 26 , 34 ) , non-small cell lung cancer ( 26 ) , non-small cell lung adenocarcinoma ( 10 , 18 , 34 ) , lymphoma ( 14 ) , Burkitt's lymphoma ( 14 ) , follicular lymphoma ( 14 ) , mantle cell lymphoma ( 14 ) , neuroblastoma ( 23 ) , ovarian cancer ( 12 ) , pancreatic ductal adenocarcinoma ( 17 ) , melanoma skin cancer ( 9 )
Relevant cell line - cell type - tissue:
'pancreatic, ductal'-pancreas ( 17 ) , 293 (epithelial) [ADRB1 (human), no information, overexpresses human beta1-adrenergic (ß1AR- HEK293)] ( 52 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 44 ) , 786-O (renal) [VHL (human), transfection] ( 7 ) , A498 (renal) ( 45 ) , A549 (pulmonary) ( 19 ) , AML-193 (monocyte) ( 24 ) , BJAB (B lymphocyte) ( 14 ) , breast ( 4 , 12 ) , BT-549 (breast cell) ( 26 ) , CMK (megakaryoblast) ( 24 ) , COS (fibroblast) ( 55 ) , endothelial-aorta ( 28 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 30 ) , H2077 (pulmonary) ( 26 ) , H322M (pulmonary) ( 26 ) , HCC1937 (breast cell) ( 26 ) , HCC366 (pulmonary) ( 26 ) , HCC78 (pulmonary) ( 26 ) , HCC827 (pulmonary) ( 26 ) , HEK293T (epithelial) ( 8 , 56 ) , HEL (erythroid) ( 24 ) , HeLa (cervical) [OGT (rat), transfection] ( 47 ) , HeLa (cervical) ( 3 , 11 , 22 , 32 , 37 , 39 , 41 , 47 , 49 , 51 , 52 , 53 , 54 , 57 , 58 , 59 ) , HeLa S3 (cervical) ( 46 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 13 ) , HMLER ('stem, breast cancer') ( 13 ) , HOP62 (pulmonary) ( 26 ) , HUES-9 ('stem, embryonic') ( 36 ) , JEKO-1 (B lymphocyte) ( 14 ) , Jurkat (T lymphocyte) ( 20 , 33 , 35 , 38 , 40 , 42 , 43 ) , K562 (erythroid) ( 22 , 48 ) , Kasumi-1 (myeloid) ( 24 ) , KG-1 (myeloid) ( 24 ) , LCLC-103H (pulmonary) ( 26 ) , liver ( 16 ) , LOU-NH91 (squamous) ( 26 ) , lung ( 18 ) , MCF-7 (breast cell) ( 6 , 26 ) , MDA-MB-231 (breast cell) ( 26 ) , MV4-11 (macrophage) ( 24 , 27 ) , NB10 (neural crest) ( 23 ) , NCEB-1 (B lymphocyte) ( 14 ) , NCI-H1395 (pulmonary) ( 26 ) , NCI-H1568 (pulmonary) ( 26 ) , NCI-H157 (pulmonary) ( 26 ) , NCI-H1666 (pulmonary) ( 26 ) , NCI-H2030 (pulmonary) ( 26 ) , NCI-H322 (pulmonary) ( 26 ) , NCI-H460 (pulmonary) ( 26 ) , NCI-H520 (squamous) ( 26 ) , NCI-H647 (pulmonary) ( 26 ) , NPC (neural crest) ( 23 ) , OCI-ly1 (B lymphocyte) ( 14 ) , ovary ( 12 ) , P31/FUJ (erythroid) ( 24 , 27 ) , PC9 (pulmonary) ( 10 , 26 ) , PC9-IR (pulmonary) ( 10 ) , Raji (B lymphocyte) ( 14 ) , RAMOS (B lymphocyte) ( 14 ) , SH-SY5Y (neural crest) [LRRK2 (human), transfection, over-expression of LRRK2(G2019S)] ( 15 ) , SH-SY5Y (neural crest) ( 15 ) , SKBr3 (breast cell) ( 25 ) , SU-DHL-4 (B lymphocyte) ( 14 ) , T lymphocyte-blood ( 29 ) , tsBN2 (fibroblast) ( 50 , 54 ) , U-1810 (pulmonary) [EFNB3 (human), knockdown] ( 34 ) , U-1810 (pulmonary) ( 34 ) , UPN-1 (B lymphocyte) ( 14 ) , Vero E6-S ('epithelial, kidney') ( 2 ) , WM239A (melanocyte) ( 9 )

Upstream Regulation
Kinases, in vitro:
CDK1 (human) ( 50 )
Treatments:
anti-CD3 ( 29 ) , EGF ( 3 ) , LRRK2-IN-1 ( 15 )

Downstream Regulation
Effects of modification on RCC1:
intracellular localization ( 54 , 59 ) , molecular association, regulation ( 50 )
Effects of modification on biological processes:
cell growth, altered ( 54 ) , cytoskeletal reorganization ( 50 )
Inhibit interaction with:
KPNA4 (human) ( 50 )

References 

1

Hou X, et al. (2021) Phosphorylation of RCC1 on Serine 11 Facilitates G1/S Transition in HPV E7-Expressing Cells. Biomolecules 11
34356619   Curated Info

2

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell
32645325   Curated Info

3

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

4

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

5

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

6

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

7

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

8

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

9

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

10

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

11

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

12

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

13

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

14

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

15

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

16

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

17

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

18

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

19

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

20

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

21

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

22

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

23

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

24

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

25

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

26

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

27

Alcolea MP, et al. (2012) Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance. Mol Cell Proteomics 11, 453-66
22547687   Curated Info

28

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

29

Ruperez P, Gago-Martinez A, Burlingame AL, Oses-Prieto JA (2012) Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells. Mol Cell Proteomics 11, 171-86
22499768   Curated Info

30

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

31

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

32

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

33

Guo A (2011) CST Curation Set: 12741; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

34

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

35

Guo A (2011) CST Curation Set: 11425; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

36

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

37

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

38

Possemato A (2010) CST Curation Set: 10837; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

39

Zhou J (2010) CST Curation Set: 10708; Year: 2010; Biosample/Treatment: cell line, HeLa/untreated; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

40

Possemato A (2010) CST Curation Set: 10720; Year: 2010; Biosample/Treatment: cell line, Jurkat/pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

41

Zhou J (2010) CST Curation Set: 10684; Year: 2010; Biosample/Treatment: cell line, HeLa/untreated; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

42

Possemato A (2010) CST Curation Set: 10053; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

43

Possemato A (2010) CST Curation Set: 10051; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

44

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

45

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

46

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

47

Wang Z, et al. (2010) Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal 3, ra2
20068230   Curated Info

48

Moritz A (2009) CST Curation Set: 8719; Year: 2009; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

49

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

50

Horiike Y, Kobayashi H, Sekiguchi T (2009) Ran GTPase guanine nucleotide exchange factor RCC1 is phosphorylated on serine 11 by cdc2 kinase in vitro. Mol Biol Rep 36, 717-23
18568422   Curated Info

51

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

52

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

53

Imami K, et al. (2008) Automated Phosphoproteome Analysis for Cultured Cancer Cells by Two-Dimensional NanoLC-MS Using a Calcined Titania/C18 Biphasic Column. Anal Sci 24, 161-6
18187866   Curated Info

54

Hood FE, Clarke PR (2007) RCC1 isoforms differ in their affinity for chromatin, molecular interactions and regulation by phosphorylation. J Cell Sci 120, 3436-45
17855385   Curated Info

55

Wang Y, et al. (2007) Profiling signaling polarity in chemotactic cells. Proc Natl Acad Sci U S A 104, 8328-33
17494752   Curated Info

56

Molina H, et al. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A 104, 2199-204
17287340   Curated Info

57

Olsen JV, et al. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-48
17081983   Curated Info

58

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info

59

Hutchins JR, et al. (2004) Phosphorylation regulates the dynamic interaction of RCC1 with chromosomes during mitosis. Curr Biol 14, 1099-104
15203004   Curated Info