Ser39
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.5
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser39  -  Vimentin (mouse)

Site Information
TTsTRTysLGsALRP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 451766

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 4 , 5 , 6 , 8 , 9 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 20 , 21 , 22 , 23 , 24 ) , mutation of modification site ( 7 , 10 , 25 ) , phospho-antibody ( 1 , 7 , 19 , 26 ) , western blotting ( 1 , 7 , 19 , 26 )
Disease tissue studied:
adrenal cancer ( 7 ) , bladder cancer ( 25 ) , neuroblastoma ( 18 , 26 ) , melanoma skin cancer ( 23 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 5 , 8 , 12 ) , 'fat, brown' ( 21 ) , 3T3 (fibroblast) ( 19 ) , BaF3 ('B lymphocyte, precursor') [JAK3 (human), transfection] ( 4 ) , brain ( 21 ) , epithelial-lens [Vimentin (mouse), genetic knockin] ( 10 ) , heart ( 13 , 21 ) , Hepa 1-6 (epithelial) ( 24 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 9 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 9 ) , HL-1 (myocyte) ( 9 ) , kidney ( 21 ) , liver ( 11 , 15 , 21 ) , liver [leptin (mouse), homozygous knockout] ( 15 ) , lung ( 21 ) , macrophage-bone marrow ( 1 , 22 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 22 ) , macrophage-peritoneum ( 1 , 14 ) , MC3T3-E1 (preosteoblast) ( 6 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 16 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 17 ) , N1E-115 (neuron) ( 18 ) , Neuro-2a (neuron) ( 26 ) , pancreas ( 21 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 23 ) , spleen ( 21 ) , SW13 (adrenal) ( 7 ) , T lymphocyte-spleen ( 20 ) , T24 (bladder cell) ( 25 ) , testis ( 21 )

Upstream Regulation
Regulatory protein:
RAC1 (mouse) ( 19 ) , Vimentin (human) ( 7 )
Kinases, in vitro:
AurB (mouse) ( 25 ) , CAMK2A (rat) ( 27 ) , PKACA (mouse) ( 28 ) , PKCA (mouse) ( 28 )
Treatments:
calyculin_A ( 7 ) , insulin ( 12 ) , LDL_oxidized ( 1 ) , LPA ( 18 ) , LPS ( 22 ) , LY294002 ( 12 ) , MK-2206 ( 12 ) , okadaic_acid ( 26 ) , PTH(1-34) ( 6 ) , serum ( 19 ) , serum_withdrawal ( 19 )

Downstream Regulation
Effects of modification on Vimentin:
intracellular localization ( 1 )
Effects of modification on biological processes:
cell motility, altered ( 19 ) , cytoskeletal reorganization ( 19 , 25 )

References 

1

Kim SY, et al. (2022) Plasma Membrane Localization of CD36 Requires Vimentin Phosphorylation; A Mechanism by Which Macrophage Vimentin Promotes Atherosclerosis. Front Cardiovasc Med 9, 792717
35656400   Curated Info

2

Ding I, et al. (2020) Cooperative roles of PAK1 and filamin A in regulation of vimentin assembly and cell extension formation. Biochim Biophys Acta Mol Cell Res
32389644   Curated Info

3

Yang CY, et al. (2019) Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene 38
30696956   Curated Info

4

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 32
28852199   Curated Info

5

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

6

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

7

Robert A, et al. (2015) Vimentin filament precursors exchange subunits in an ATP-dependent manner. Proc Natl Acad Sci U S A 112, E3505-14
26109569   Curated Info

8

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

9

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

10

Matsuyama M, et al. (2013) Defect of mitotic vimentin phosphorylation causes microophthalmia and cataract via aneuploidy and senescence in lens epithelial cells. J Biol Chem 288, 35626-35
24142690   Curated Info

11

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

12

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

13

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

14

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

15

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

16

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

17

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

18

Wang Y, et al. (2011) Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 286, 18190-201
21454597   Curated Info

19

Helfand BT, et al. (2011) Vimentin organization modulates the formation of lamellipodia. Mol Biol Cell 22, 1274-1289
21346197   Curated Info

20

Navarro MN, et al. (2011) Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat Immunol 12, 352-61
21399638   Curated Info

21

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

22

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

23

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

24

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

25

Goto H, et al. (2003) Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem 278, 8526-30
12458200   Curated Info

26

Nakamura Y, et al. (2000) Localized phosphorylation of vimentin by rho-kinase in neuroblastoma N2a cells. Genes Cells 5, 823-37
11029658   Curated Info

27

Ando S, et al. (1991) Evidence that Ser-82 is a unique phosphorylation site on vimentin for Ca2(+)-calmodulin-dependent protein kinase II. Biochem Biophys Res Commun 175, 955-62
1850997   Curated Info

28

Ando S, et al. (1989) Domain- and sequence-specific phosphorylation of vimentin induces disassembly of the filament structure. Biochemistry 28, 2974-9
2500966   Curated Info