Ser552
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.8.0
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser552  -  NHE3 (rat)

Site Information
AEGERRGsLAFIRSP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 450899

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 18 ) , immunoprecipitation ( 13 , 18 ) , mass spectrometry ( 8 , 10 ) , mutation of modification site ( 12 , 13 , 17 , 18 ) , phospho-antibody ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 9 , 11 , 12 , 14 , 15 , 16 ) , phosphoamino acid analysis ( 18 ) , phosphopeptide mapping ( 18 ) , western blotting ( 1 , 2 , 4 , 5 , 6 , 7 , 9 , 11 , 12 , 15 )
Disease tissue studied:
kidney cancer ( 15 )
Relevant cell line - cell type - tissue:
'kidney, cortex' ( 1 , 2 , 4 , 9 , 10 , 11 ) , AP-1 (fibroblast) ( 18 ) , C2BBe1 (intestinal) ( 13 ) , COS (fibroblast) ( 12 , 16 ) , intestine ( 8 ) , kidney ( 8 , 14 , 15 , 16 ) , LLC-PK1 (renal) ( 6 ) , MDCK (epithelial) ( 5 ) , OKP (epithelial) ( 12 , 15 , 16 , 18 ) , PS120 (fibroblast) ( 12 ) , renal ( 7 ) , renal nerve ( 3 )

Upstream Regulation
Regulatory protein:
Ezrin (rat) ( 5 )
Putative in vivo kinases:
PKACA (human) ( 4 , 9 )
Kinases, in vitro:
PKACA (rat) ( 18 )
Phosphatases, in vitro:
PPP1CA (human) ( 12 )
Treatments:
6-MB-cAMP ( 4 ) , angiotensin_2 ( 2 ) , calyculin_A ( 12 ) , cAMP_analog ( 18 ) , colforsin ( 5 , 12 , 15 , 16 ) , dopamine ( 16 ) , electrical_stimulation ( 3 ) , exenatide ( 9 ) , fructose ( 6 ) , GLP-1 ( 9 ) , H-89 ( 9 ) , high-salt diet ( 14 ) , hypertension ( 11 ) , IBMX ( 5 , 12 , 15 , 16 ) , losartan ( 2 , 3 ) , mercuric_chloride ( 1 ) , okadaic_acid ( 12 ) , P32/98 ( 9 ) , PTH ( 15 )

Downstream Regulation
Effects of modification on NHE3:
activity, inhibited ( 1 , 2 , 3 , 4 , 6 , 9 , 11 , 17 , 18 ) , intracellular localization ( 11 , 13 , 16 ) , molecular association, regulation ( 13 )
Induce interaction with:
SYT1 (human) ( 13 )

Disease / Diagnostics Relevance
Relevant diseases:
cardiomyopathy ( 7 )

References 

1

Vieira JVDA, et al. (2021) Changes in the renal function after acute mercuric chloride exposure in the rat are associated with renal vascular endothelial dysfunction and proximal tubule NHE3 inhibition. Toxicol Lett 341, 23-32
33476711   Curated Info

2

Lins BB, et al. (2021) Long-Term Angiotensin II Infusion Induces Oxidative and Endoplasmic Reticulum Stress and Modulates Na Transporters Through the Nephron. Front Physiol 12, 642752
33868007   Curated Info

3

Pontes RB, et al. (2015) Renal nerve stimulation leads to the activation of the Na+/H+ exchanger isoform 3 via angiotensin II type I receptor. Am J Physiol Renal Physiol 308, F848-56
25656367   Curated Info

4

Crajoinas RO, et al. (2014) Changes in the activity and expression of protein phosphatase-1 accompany the differential regulation of NHE3 before and after the onset of hypertension in spontaneously hypertensive rats. Acta Physiol (Oxf) 211, 395-408
24666699   Curated Info

5

Hayashi H, et al. (2013) Ezrin Is Required for the Functional Regulation of the Epithelial Sodium Proton Exchanger, NHE3. PLoS One 8, e55623
23405179   Curated Info

6

Queiroz-Leite GD, et al. (2012) Fructose acutely stimulates NHE3 activity in kidney proximal tubule. Kidney Blood Press Res 36, 320-34
23235337   Curated Info

7

Inoue BH, et al. (2012) Increased NHE3 abundance and transport activity in renal proximal tubule of rats with heart failure. Am J Physiol Regul Integr Comp Physiol 302, R166-74
22031782   Curated Info

8

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

9

Crajoinas RO, et al. (2011) Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol 301, F355-63
21593184   Curated Info

10

Feric M, et al. (2011) Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule. Am J Physiol Cell Physiol 300, C755-70
21209370   Curated Info

11

Crajoinas RO, et al. (2010) Posttranslational mechanisms associated with reduced NHE3 activity in adult vs. young prehypertensive SHR. Am J Physiol Renal Physiol 299, F872-81
20630932   Curated Info

12

Dynia DW, Steinmetz AG, Kocinsky HS (2010) NHE3 function and phosphorylation are regulated by a calyculin A-sensitive phosphatase. Am J Physiol Renal Physiol 298, F745-53
20015946   Curated Info

13

Musch MW, et al. (2010) Cyclic AMP-mediated endocytosis of intestinal epithelial NHE3 requires binding to synaptotagmin 1. Am J Physiol Gastrointest Liver Physiol 298, G203-11
19926819   Curated Info

14

Yang LE, et al. (2008) Effects of dietary salt on renal Na+ transporter subcellular distribution, abundance, and phosphorylation status. Am J Physiol Renal Physiol 295, F1003-16
18653479   Curated Info

15

Kocinsky HS, Dynia DW, Wang T, Aronson PS (2007) NHE3 phosphorylation at serines 552 and 605 does not directly affect NHE3 activity. Am J Physiol Renal Physiol 293, F212-8
17409282   Curated Info

16

Kocinsky HS, et al. (2005) Use of phospho-specific antibodies to determine the phosphorylation of endogenous Na+/H+ exchanger NHE3 at PKA consensus sites. Am J Physiol Renal Physiol 289, F249-58
15687252   Curated Info

17

Bagorda A, et al. (2002) Reciprocal protein kinase A regulatory interactions between cystic fibrosis transmembrane conductance regulator and Na+/H+ exchanger isoform 3 in a renal polarized epithelial cell model. J Biol Chem 277, 21480-8
11937500   Curated Info

18

Zhao H, et al. (1999) Acute inhibition of Na/H exchanger NHE-3 by cAMP. Role of protein kinase a and NHE-3 phosphoserines 552 and 605. J Biol Chem 274, 3978-87
9933588   Curated Info